2999 3000 3001
Cardinalthree thousand
Ordinal3000th
(three thousandth)
Factorization23 × 3 × 53
Greek numeral,Γ´
Roman numeralMMM
Unicode symbol(s)MMM, mmm
Binary1011101110002
Ternary110100103
Senary215206
Octal56708
Duodecimal18A012
HexadecimalBB816

3000 (three thousand) is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).

Selected numbers in the range 3001–3999

3001 to 3099

3100 to 3199

3200 to 3299

  • 3203 – safe prime
  • 3207 – number of compositions of 14 whose run-lengths are either weakly increasing or weakly decreasing[15]
  • 3229super-prime
  • 3240triangular number
  • 3248 – member of a Ruth-Aaron pair with 3249 under second definition, largest number whose factorial is less than 1010000 – hence its factorial is the largest certain advanced computer programs can handle.
  • 3249 = 572, palindromic in base 7 (123217), centered octagonal number,[1] member of a Ruth–Aaron pair with 3248 under second definition
  • 3253 – sum of eleven consecutive primes (269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331)
  • 3256 – centered heptagonal number[3]
  • 3259super-prime, completes the ninth prime quadruplet set
  • 3264 – solution to Steiner's conic problem: number of smooth conics tangent to 5 given conics in general position[16]
  • 3266 – sum of first 41 primes, 523rd sphenic number
  • 3276tetrahedral number[17]
  • 3277 – 5th super-Poulet number,[18] decagonal number[4]
  • 3281octahedral number,[19] centered square number[9]
  • 3286 – nonagonal number[7]
  • 3299 – 85th Sophie Germain prime, super-prime

3300 to 3399

3400 to 3499

3500 to 3599

3600 to 3699

3700 to 3799

3800 to 3899

3900 to 3999

Prime numbers

There are 120 prime numbers between 3000 and 4000:[32][33]

3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989

References

  1. 1 2 3 4 5 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  2. "Sloane's A051624 : 12-gonal (or dodecagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  3. 1 2 3 4 5 "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  4. 1 2 3 4 "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  5. 1 2 "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  6. "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  7. 1 2 3 4 5 "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  8. 1 2 "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  9. 1 2 3 4 5 6 "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  10. "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  11. 1 2 3 "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  12. 1 2 3 4 "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  13. 1 2 3 4 5 "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  14. 1 2 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  15. Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  16. Bashelor, Andrew; Ksir, Amy; Traves, Will (2008), "Enumerative algebraic geometry of conics." (PDF), Amer. Math. Monthly, 115 (8): 701–728, doi:10.1080/00029890.2008.11920584, JSTOR 27642583, MR 2456094, S2CID 16822027
  17. 1 2 "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  18. "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  19. 1 2 "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  20. 1 2 3 4 "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  21. "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  22. 1 2 "Sloane's A002648 : A variant of the cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  23. Sloane, N. J. A. (ed.). "Sequence A007053". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  24. "Sloane's A000032 : Lucas numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  25. "Sloane's A082079 : Balanced primes of order four". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  26. "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  27. Sloane, N. J. A. (ed.). "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  28. Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. Sloane, N. J. A. (ed.). "Sequence A046528". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. Sloane, N. J. A. (ed.). "Sequence A247838". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. Lamb, Evelyn (October 25, 2019), "Farewell to the Fractional Foot", Roots of Unity, Scientific American
  32. Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.