A conductive textile is a fabric which can conduct electricity. Conductive textiles known as lamé are made with guipé thread or yarn that is conductive because it is composed of metallic fibers wrapped around a non-metallic core or has a metallic coating. A different way of achieving conductivity is to weave metallic strands into the textile.

Some historic fabrics use yarns of solid metals, most commonly gold. Alternatively, novel materials such as nanomaterials (including graphene, and carbon nanotubes) or conducting polymers may also be used as the conducting materials.[1] There is also an interest in semiconducting textiles, made by impregnating normal textiles with carbon- or metal-based powders.[2]

Conductive fibers consist of a non-conductive or less conductive substrate, which is then either coated or embedded with electrically conductive elements, often carbon, nickel, copper, gold, silver, titanium or PEDOT. Metals may be deposited chemically with autocatalytic chemistry,[3] printed with conductive nanoparticle inks,[4] or applied with physical vapor deposition methods.[5] Substrates typically include cotton, polyester, nylon, and stainless steel to high performance fibers such as aramids and PBO. Straddling the worlds of textiles and wires, conductive fibers are sold either by weight or length, and measured in denier or AWG.

Because of the rapid growth in the kinds of conductive fibers and the uses of these fibers, a trade association—the Conductive Fiber Manufacturers Council[6]—was formed to increase awareness, utilization, and possibly standardize terminology.

Applications

Carbon tape Taser-proof vest on Instructables

Uses for conductive fibers and textiles may include static dissipation, EMI shielding,[7] signal and power transfer in low resistance versions, and as a heating element in higher resistance versions. Their benefits over solid or stranded metal wires come from conductive fibers' flexibility and ability to use them in existing textile and wire machinery (weaving, knitting, braiding, etc.).

The sport of fencing employs lamés, jackets made of conductive textiles, to detect hits in competitions.

One major use is by Micro Coax's ARACON™ fiber built on a KEVLAR® base, and used for shielding cabling in air- and spacecraft and other speciality purposes where light weight, high strength, and high-frequency shielding is imperative. Another more recent use is in the production of 'stun gun' or Taser-proof clothing, where the conductive textile forms a flexible Faraday cage in a layer of the garment. Conductive fabric can also be used to make electrodes for EEG and other medical applications;[8] such electrodes were used in a commercially available sleep-monitoring device made by former company Zeo, Inc. Highly conductive stainless steel fiber is available.[9]

See also

References

  1. Lund, A., Wu, Y., Fenech-Salerno, B. et al. Conducting materials as building blocks for electronic textiles. MRS Bulletin 46, 491–501 (2021). https://doi.org/10.1557/s43577-021-00117-0
  2. "Tech Exchange". Archived from the original on 2010-05-10. Retrieved 2010-01-10.
  3. Grell, Max; Dincer, Can; Le, Thao; Lauri, Alberto; Nunez Bajo, Estefania; Kasimatis, Michael; Barandun, Giandrin; Maier, Stefan A.; Cass, Anthony E. G. (2018-11-09). "Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting". Advanced Functional Materials. 29 (1): 1804798. doi:10.1002/adfm.201804798. ISSN 1616-301X. PMC 7384005. PMID 32733177.
  4. Chiolerio, Alessandro; Rajan, Krishna; Roppolo, Ignazio; Chiappone, Annalisa; Bocchini, Sergio; Perrone, Denis (2016-01-11). "Silver nanoparticle ink technology: state of the art". Nanotechnology, Science and Applications. 9: 1–13. doi:10.2147/nsa.s68080. ISSN 1177-8903. PMC 4714735. PMID 26811673.
  5. Yang, Yu; Huang, Qiyao; Niu, Liyong; Wang, Dongrui; Yan, Casey; She, Yiyi; Zheng, Zijian (2017-02-24). "Waterproof, Ultrahigh Areal-Capacitance, Wearable Supercapacitor Fabrics". Advanced Materials. 29 (19): 1606679. Bibcode:2017AdM....2906679Y. doi:10.1002/adma.201606679. ISSN 0935-9648. PMID 28234421. S2CID 205276875.
  6. "Conductive Fiber Manufacturers Council". www.cfibermfg.com. Retrieved 18 April 2018.
  7. Aniołczyk, Halina; Koprowska, Joanna; Mamrot, Paweł; Lichawska, Joanna (2004). "Application of Electrically Conductive Textiles as Electromagnetic Shields in Physiotherapy" (PDF). FIBRES & TEXTILES in Eastern Europe. 12: 47–50.
  8. "Pressure support system with dry electrode sleep staging device". google.com. Retrieved 18 April 2018.
  9. Skotheim, Terje A. (1997). Handbook of Conducting Polymers, Second Edition. CRC Press. p. 993. ISBN 9780824700508.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.