In mathematics, Dieudonné's theorem, named after Jean Dieudonné, is a theorem on when the Minkowski sum of closed sets is closed.

Statement

Let be a locally convex space and nonempty closed convex sets. If either or is locally compact and (where gives the recession cone) is a linear subspace, then is closed.[1][2]

References

  1. J. Dieudonné (1966). "Sur la séparation des ensembles convexes". Math. Ann.. 163: 1–3. doi:10.1007/BF02052480. S2CID 119742919.
  2. Zălinescu, Constantin (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc. pp. 6–7. ISBN 981-238-067-1. MR 1921556.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.