In mathematics, the linear algebra concept of dual basis can be applied in the context of a finite extension L/K, by using the field trace. This requires the property that the field trace TrL/K provides a non-degenerate quadratic form over K. This can be guaranteed if the extension is separable; it is automatically true if K is a perfect field, and hence in the cases where K is finite, or of characteristic zero.

A dual basis () is not a concrete basis like the polynomial basis or the normal basis; rather it provides a way of using a second basis for computations.

Consider two bases for elements in a finite field, GF(pm):

and

then B2 can be considered a dual basis of B1 provided

Here the trace of a value in GF(pm) can be calculated as follows:

Using a dual basis can provide a way to easily communicate between devices that use different bases, rather than having to explicitly convert between bases using the change of bases formula. Furthermore, if a dual basis is implemented then conversion from an element in the original basis to the dual basis can be accomplished with multiplication by the multiplicative identity (usually 1).

References

    • Lidl, Rudolf; Niederreiter, Harald (1994). Introduction to finite fields and their applications. Cambridge: Cambridge University Press. doi:10.1017/cbo9781139172769. ISBN 9781139172769., Definition 2.30, p. 54.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.