Isbell conjugacy or Isbell duality (named after John R. Isbell) is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986.[1][2] That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding.[3]
Definition
The Yoneda embedding
and the co-Yoneda embedding[4][5] or the dual Yoneda embedding[6]
Let be a symmetric monoidal closed category, and let be a small category enriched in .
The Isbell conjugacy is an adjunction between the categories; [1][4][7][8][5].
See also
References
- 1 2 (Lawvere 1986, p. 169)
- ↑ (Rutten 1998)
- ↑ (Melliès & Zeilberger 2018)
- 1 2 (Baez 2022)
- 1 2 (Isbell duality in nlab)
- ↑ (Day & Lack 2007)
- ↑ (Di Liberti 2020, Remark 2.4)
- ↑ (Fosco 2021)
Bibliography
- Avery, Tom; Leinster, Tom (2021), "Isbell conjugacy and the reflexive completion", Theory and Applications of Categories, 36: 306–347, arXiv:2102.08290
- Baez, John C. (2022), "Isbell Duality", Notices Amer. Math. Soc., 70: 140–141, arXiv:2212.11079
- Day, Brian J.; Lack, Stephen (2007), "Limits of small functors", Journal of Pure and Applied Algebra, 210 (3): 651–663, arXiv:math/0610439, doi:10.1016/j.jpaa.2006.10.019, MR 2324597, S2CID 15424936.
- Di Liberti, Ivan (2020), "Codensity: Isbell duality, pro-objects, compactness and accessibility", Journal of Pure and Applied Algebra, 224 (10), arXiv:1910.01014, doi:10.1016/j.jpaa.2020.106379, S2CID 203626566
- Fosco, Loregian (22 July 2021), (Co)end Calculus, Cambridge University Press, arXiv:1501.02503, doi:10.1017/9781108778657, ISBN 9781108746120, S2CID 237839003
- Gutierres, Gonçalo; Hofmann, Dirk (2013), "Approaching Metric Domains", Applied Categorical Structures, 21 (6): 617–650, arXiv:1103.4744, doi:10.1007/s10485-011-9274-z, S2CID 254225188
- Isbell, J. R. (1960), "Adequate subcategories", Illinois Journal of Mathematics, 4 (4), doi:10.1215/ijm/1255456274
- Isbell, John R. (1966), "Structure of categories", Bulletin of the American Mathematical Society, 72 (4): 619–656, doi:10.1090/S0002-9904-1966-11541-0, S2CID 40822693
- Kelly, Gregory Maxwell (1982), Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge-New York, ISBN 0-521-28702-2, MR 0651714.
- Lawvere, F. W. (1986), "Taking categories seriously (p. 169)", Revista Colombiana de Matemáticas, 20 (3–4): 147–178, MR 0948965
- Melliès, Paul-André; Zeilberger, Noam (2018), "An Isbell duality theorem for type refinement systems", Mathematical Structures in Computer Science, 28 (6): 736–774, arXiv:1501.05115, doi:10.1017/S0960129517000068, S2CID 2716529
- Rutten, J.J.M.M. (1998), "Weighted colimits and formal balls in generalized metric spaces", Topology and Its Applications, 89 (1–2): 179–202, doi:10.1016/S0166-8641(97)00224-1
- Sturtz, Kirk (2018), "The factorization of the Giry monad", Advances in Mathematics, 340: 76–105, arXiv:1707.00488, doi:10.1016/j.aim.2018.10.007
- Wood, R.J (1982), "Some remarks on total categories", Journal of Algebra, 75 (2): 538–545, doi:10.1016/0021-8693(82)90055-2
External links
- Loregian, Fosco (2018), "Kan extensions" (PDF), tetrapharmakon.github.io
- Ivan Di Liberti; Loregian, Fosco (2019). "On the unicity of formal category theories". arXiv:1901.01594 [math.CT].
- "Isbell duality", ncatlab.org
- "Yoneda embedding", ncatlab.org
- "co-Yoneda lemma", ncatlab.org
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.