Kepler-25
Observation data
Epoch J2000      Equinox J2000
Constellation Lyra[1]
Right ascension 19h 06m 33.2143s[2]
Declination +39° 29 16.358[2]
Apparent magnitude (V) 10.623±0.053[3]
Characteristics
Spectral type F[4]
Apparent magnitude (B) 11.337±0.016[3]
Variable type Planetary transit variable
Astrometry
Proper motion (μ) RA: −0.455±0.040[2] mas/yr
Dec.: 6.169±0.044[2] mas/yr
Parallax (π)4.0822 ± 0.0236 mas[2]
Distance799 ± 5 ly
(245 ± 1 pc)
Details
Mass1.159+0.040
−0.051
[5] M
Radius1.297±0.015[5] R
Luminosity2.406+0.126
−0.128
[5] L
Surface gravity (log g)4.275+0.007
−0.008
[5] cgs
Temperature6270±79[6] K
Metallicity [Fe/H]−0.05±0.10[6] dex
Rotation23.147±0.039 days[7]
Rotational velocity (v sin i)9.5[8] km/s
Age3.45+0.81
−0.72
[5] Gyr
Other designations
Gaia DR2 2100451630105041152, KOI-244, KIC 4349452, TYC 3124-1264-1, 2MASS J19063321+3929164[9]
Database references
SIMBADdata
KICdata

Kepler-25 is a star in the northern constellation of Lyra.[1] It is slightly larger and more massive than the Sun, with a luminosity 212 times that of the Sun.[5] With an apparent visual magnitude of 10.6,[3] this star is too faint to be seen with the naked eye.

Planetary system

In 2011, two candidate planets were found transiting this star by the Kepler space telescope.[10] These planets are very close to yet not lie in the 1:2 orbital resonance to each other, indicating the absence of other planetary objects in the inner part of the planetary systems.[11] These planets were confirmed through transit-timing variation method.[12] A third planet was discovered through follow-up radial velocity measurements and was confirmed in January 2014.[8]

The plane of planetary orbits is well aligned with the equatorial plane of the star, misalignment angle equal to 7±8°[13]

The Kepler-25 planetary system[14][4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 8.7+2.5
−2.3
 M🜨
0.068 6.238297±0.000017 0.0029+0.0023
−0.0017
92.827+0.084
−0.083
°
2.748+0.038
−0.035
 R🜨
c 15.2+1.3
−1.6
 M🜨
0.11 12.7207±0.0001 0.0061+0.0049
−0.0041
92.764+0.042
−0.039
°
5.217+0.070
−0.065
 R🜨
d 71.9±9.8 M🜨 122.4+0.0
−0.7
0.13+0.13
−0.09

References

  1. 1 2 Roman, Nancy G. (1987). "Identification of a Constellation From a Position". Publications of the Astronomical Society of the Pacific. 99 (617): 695–699. Bibcode:1987PASP...99..695R. doi:10.1086/132034. Vizier query form
  2. 1 2 3 4 5 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  3. 1 2 3 Henden, A. A.; et al. (2016). "VizieR Online Data Catalog: AAVSO Photometric All Sky Survey (APASS) DR9 (Henden+, 2016)". VizieR On-line Data Catalog: II/336. Originally Published in: 2015AAS...22533616H. 2336. Bibcode:2016yCat.2336....0H. Vizier catalog entry
  4. 1 2 Schneider, Jean, "Star: Kepler-25", Extrasolar Planets Encyclopaedia, archived from the original on 2012-06-16, retrieved 2013-12-18
  5. 1 2 3 4 5 6 Silva Aguirre, V.; et al. (2015). "Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology". Monthly Notices of the Royal Astronomical Society. 452 (2): 2127–2148. arXiv:1504.07992. Bibcode:2015MNRAS.452.2127S. doi:10.1093/mnras/stv1388.
  6. 1 2 Huber, Daniel; et al. (2013). "Fundamental Properties of Kepler Planet-candidate Host Stars using Asteroseismology". The Astrophysical Journal. 767 (2). 127. arXiv:1302.2624. Bibcode:2013ApJ...767..127H. doi:10.1088/0004-637X/767/2/127.
  7. McQuillan, A.; Mazeh, T.; Aigrain, S. (2013). "Stellar Rotation Periods of The Kepler objects of Interest: A Dearth of Close-In Planets Around Fast Rotators". The Astrophysical Journal Letters. 775 (1). L11. arXiv:1308.1845. Bibcode:2013ApJ...775L..11M. doi:10.1088/2041-8205/775/1/L11.
  8. 1 2 Marcy, Geoffrey W.; et al. (2014). "Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets". The Astrophysical Journal Supplement Series. 210 (2). 20. arXiv:1401.4195. Bibcode:2014ApJS..210...20M. doi:10.1088/0067-0049/210/2/20.
  9. "Kepler-25". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2019-10-02.
  10. Borucki, William J.; et al. (2011). "Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data". The Astrophysical Journal. 736 (1). 19. arXiv:1102.0541. Bibcode:2011ApJ...736...19B. doi:10.1088/0004-637X/736/1/19.
  11. Migaszewski, Cezary; Gozdziewski, Krzysztof (2018), "A periodic configuration of the Kepler-25 planetary system?", Monthly Notices of the Royal Astronomical Society, 480 (2): 1767–1777, arXiv:1803.10285, doi:10.1093/mnras/sty1972, S2CID 55395774
  12. Steffen, Jason H.; et al. (2012). "Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations". Monthly Notices of the Royal Astronomical Society. 421 (3): 2342–2354. arXiv:1201.5412. Bibcode:2012MNRAS.421.2342S. doi:10.1111/j.1365-2966.2012.20467.x.
  13. Albrecht, Simon; Winn, Joshua N.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Johnson, John A. (2013), "Low Stellar Obliquities in Compact Multiplanet Systems", The Astrophysical Journal, 771 (1): 11, arXiv:1302.4443, Bibcode:2013ApJ...771...11A, doi:10.1088/0004-637X/771/1/11, S2CID 17247029
  14. Mills, Sean M.; et al. (2019). "Long-period Giant Companions to Three Compact, Multiplanet Systems". The Astronomical Journal. 157 (4). 145. arXiv:1903.07186. Bibcode:2019AJ....157..145M. doi:10.3847/1538-3881/ab0899.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.