This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.

Note:

  • Traditionally, magnetizing field H, is measured in amperes per meter.
  • Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m2].[1]
  • One tesla is equal to 104 gauss.
  • Magnetic field drops off as the inverse cube of the distance (1/distance3) from a dipole source.
  • Energy required to produce laboratory magnetic fields increases with the square of magnetic field.[2]

Examples

These examples attempt to make the measuring point clear, usually the surface of the item mentioned.

Magnetic field strength (from lower to higher orders of magnitude)
Factor

(tesla)

SI name SI

Value

CGS

Value

Example of magnetic field strength
10−18 T attotesla 1 aT 10 fG
5 aT50 fGSensitivity of Gravity Probe B gyroscope's "SQUID" magnetometer (most sensitive when averaged over days)[3]
10−17 T 10 aT 100 fG
10−16 T 100 aT 1 pG
10−15 T femtotesla 1 fT 10 pG
2 fT20 pG
10−14 T 10 fT 100 pG
10−13 T 100 fT1 nGHuman brain
10−12 T picotesla 1 pT 10 nG
10−11 T10 pT100 nG"Potholes" in the magnetic field found in the heliosheath around the Solar System reported by Voyager 1 (NASA, 2006)[4]
10−10 T 100 pT 1 μG Heliosphere
10−9 T nanotesla 1 nT 10 μG
10−8 T 10 nT 100 μG
10−7 T 100 nT 1 mG Coffeemaker (30 cm or 1 ft away)[5]
100 nT to 500 nT 1 mG to 5 mG Residential electric distribution lines (34.5 kV) (15 m or 49 ft away)[5][6]
10−6 T microtesla 1 μT 10 mG Blender (30 cm or 1 ft away)[5]
1.3 μT to 2.7 μT 13 mG to 27 mG High power (500 kV) transmission lines (30 m or 100 ft away)[6]
6 μT60 mGMicrowave oven (30 cm or 1 ft away)[5]
10−5 T 10 μT 100 mG
24 μT 240 mG Magnetic tape near tape head
31 μT310 mGEarth's magnetic field at 0° latitude (on the equator)
58 μT580 mGEarth's magnetic field at 50° latitude
10−4 T 100 μT 1 G Magnetic flux density that will induce an electromotive force of 10-8 volts in each centimeter of a wire moving perpendicularly at 1 centimeter/second by definition (1 gauss = 1 maxwell/centimeter²)[7]
500 μT 5 G Suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH)
10−3 T millitesla 1 mT 10 G Refrigerator magnets (loosely quoted as: 10 G,[8] 50 G,[9] 100 G,[10][11] 300 G[12])
10−2 T centitesla 10 mT 100 G
30 mT 300 G Penny-sized ferrite magnet
10−1 Tdecitesla100 mT1 kGPenny-sized neodymium magnet
150 mT 1.5 kG Sunspot
100 T tesla 1 T 10 kG Inside the core of a 60 Hz power transformer (1 T to 2 T as of 2001)[13][14] or voice coil gap of a loudspeaker magnet (1 T to 2.4 T as of 2006)[15]
1.5 T to 7 T15 kG to 70 kGMedical magnetic resonance imaging systems (in practice)[16][17][18]
9.4 T94 kGExperimental magnetic resonance imaging systems: NMR spectrometer at 400 MHz (9.4 T) to 500 MHz (11.7 T)
101 T decatesla 10 T 100 kG
11.7 T117 kG
16 T160 kGLevitate a frog by distorting its atomic orbitals[19]
23.5 T235 kG1 GHz NMR spectrometer[20]
32 T235 kGStrongest continuous magnet field produced by all-superconducting magnet[21][22]
38 T380 kGStrongest continuous magnetic field produced by non-superconductive resistive magnet[23]
45.22 T452.2 kGStrongest non-tiny continuous magnetic field produced in a laboratory (Steady High Magnetic Field Facility (SHMFF) in Hefei, China, 2022),[24] beating previous 45 T record (National High Magnetic Field Laboratory's FSU, USA, 1999)[25] (both are hybrid magnets, combining a superconducting magnet with a resistive magnet)
45.5 T 455 kG Strongest continuous magnetic field produced in a laboratory (National High Magnetic Field Laboratory's FSU, USA, 2019), though the magnet is tiny (only 390 grams)[26]
102 T hectotesla 100 T1 MGStrongest pulsed non-destructive ("multi-shot") magnetic field produced in a laboratory (Pulsed Field Facility at National High Magnetic Field Laboratory's Los Alamos National Laboratory, Los Alamos, NM, USA)[27]
103 T kilotesla 1 kT 10 MG
1.2 kT12 MGRecord for indoor pulsed magnetic field, (University of Tokyo, 2018)[28]
2.8 kT28 MGRecord for human produced, pulsed magnetic field, (VNIIEF, 2001)[29]
104 T10 kT100 MG
35 kT 350 MG Felt by valence electrons in a xenon atom due to the spin–orbit effect[30]
105 T 100 kT 1 GG Non-magnetar neutron stars[31]
106 T megatesla 1 MT 10 GG
107 T 10 MT 100 GG
108 T 100 MT 1 TG
109 T gigatesla 1 GT 10 TG Schwinger limit (~4.41 GT) above which the electromagnetic field becomes nonlinear
1010 T 10 GT 100 TG Magnetar neutron stars[32]
1011 T 100 GT 1 PG
1012 T teratesla 1 TT 10 PG
1013 T 10 TT 100 PG
16 TT 160 PG Swift J0243.6+6124 most magnetic pulsar[33][34]
1014 T100 TT1 EGMagnetic fields inside heavy ion collisions at RHIC[35][36]

References

  1. "Bureau International des Poids et Mesures, The International System of Units (SI), 8th edition 2006" (PDF). bipm.org. 2012-10-01. Retrieved 2013-05-26.
  2. Laboratory, National High Magnetic Field. "Tesla Definition - MagLab". nationalmaglab.org. Retrieved 2023-12-29.
  3. Range, Shannon K'doah. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. National Aeronautics and Space Administration. October 2004.
  4. "Surprises from the Edge of the Solar System". NASA. 2006-09-21. Archived from the original on 2008-09-29. Retrieved 2017-07-12.
  5. 1 2 3 4 "Magnetic Field Levels Around Homes" (PDF). UC San Diego Dept. of Environment, Health & Safety (EH&S). p. 2. Archived from the original (PDF) on 2021-04-28. Retrieved 2017-03-07.
  6. 1 2 "EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices". United States Environmental Protection Agency. 1992. pp. 23–24. Retrieved 2017-03-07.
  7. "Gauss | magnetic field, electromagnetism, mathematics | Britannica". www.britannica.com. Retrieved 2023-12-30.
  8. adamsmagnetic (2021-01-04). "What Does Gauss Mean & What Does Gauss Measure?". Adams Magnetic Products, LLC. Retrieved 2023-12-29.
  9. "Tesla - Unit of Magnetic Flux Density". Electricity - Magnetism. Retrieved 2023-12-29.
  10. "Information on MRI Technique". Nevus Network. Retrieved 2014-01-28.
  11. Laboratory, National High Magnetic Field. "Tesla Definition - MagLab". nationalmaglab.org. Retrieved 2023-12-29.
  12. Boettger, John (2019). "The Hall Effect Gaussmeter" (PDF). Meggitt F.W. Bell. Archived (PDF) from the original on 2023-12-29. Retrieved 2023-12-29.
  13. Johnson, Gary L. (2001-10-29). "Inductors and transformers" (PDF). eece.ksu.edu. Archived from the original (PDF) on 2007-05-07. Retrieved 2013-05-26. A modern well-designed 60 Hz power transformer will probably have a magnetic flux density between 1 and 2 T inside the core.
  14. "Trafo-Bestimmung 3von3". radiomuseum.org. 2009-07-11. Retrieved 2013-06-01.
  15. Elliot, Rod (2006-12-16). "Power Handling Vs. Efficiency". Archived from the original on 2018-08-07. Retrieved 2008-02-17. Typical flux densities for (half decent) loudspeakers range from around 1 Tesla (10,000 Gauss) up to around 2.4T, and I would suggest that anything less than 1T is next to useless. Very few drivers use magnetic materials that will provide much more than 1.8T across the gap...
  16. Savage, Niel (2013-10-23). "The World's Most Powerful MRI Takes Shape".
  17. Smith, Hans-Jørgen. "Magnetic resonance imaging". Medcyclopaedia Textbook of Radiology. GE Healthcare. Archived from the original on 2012-02-07. Retrieved 2007-03-26.
  18. Orenstein, Beth W. (2006-02-16). "Ultra High-Field MRI — The Pull of Big Magnets". Radiology Today. Vol. 7, no. 3. p. 10. Archived from the original on March 15, 2008. Retrieved 2008-07-10.
  19. "Frog defies gravity". New Scientist. No. 2077. 12 April 1997.
  20. "23.5 Tesla Standard-Bore, Persistent Superconducting Magnet". Archived from the original on 2013-06-28. Retrieved 2013-05-08.
  21. "32 Tesla All-Superconducting Magnet". National High Magnetic Field Laboratory.
  22. Liu, Jianhua; Wang, Qiuliang; Qin, Lang; Zhou, Benzhe; Wang, Kangshuai; Wang, Yaohui; Wang, Lei; Zhang, Zili; Dai, Yinming; Liu, Hui; Hu, Xinning; Wang, Hui; Cui, Chunyan; Wang, Dangui; Wang, Hao (2020-03-01). "World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet". Superconductor Science and Technology. 33 (3): 03LT01. Bibcode:2020SuScT..33cLT01L. doi:10.1088/1361-6668/ab714e. ISSN 0953-2048. S2CID 213171620.
  23. ingevoerd, Geen OWMS velden. "HFML sets world record with a new 38 tesla magnet". Radboud Universiteit.
  24. "World's strongest steady magnetic field generated in China". New Atlas. 2022-08-16. Retrieved 2022-08-22.
  25. "Mag Lab Press Release: World's Most Powerful Magnet Tested Ushers in New Era for Steady High Field Research (December 17, 1999)". legacywww.magnet.fsu.edu. Retrieved 2022-08-22.
  26. Laboratory, National High Magnetic Field. "With mini magnet, National MagLab creates world-record magnetic field - MagLab". nationalmaglab.org. Archived from the original on 2023-06-10. Retrieved 2023-12-28.
  27. Laboratory, Los Alamos National. "Physical Sciences | Organizations". Los Alamos National Laboratory. Retrieved 2023-12-29.
  28. Nakamura, D.; Ikeda, A.; Sawabe, H.; Matsuda, Y. H.; Takeyama, S. (2018). "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression". Review of Scientific Instruments. 89 (9): 095106. Bibcode:2018RScI...89i5106N. doi:10.1063/1.5044557. PMID 30278742. S2CID 52908507.
  29. Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Selemir, V.D.; Tatsenko, O.M. (2001). "VNIIEF achievements on ultra-high magnetic fields generation". Physica B: Condensed Matter. 294–295: 574–578. Bibcode:2001PhyB..294..574B. doi:10.1016/S0921-4526(00)00723-7.
  30. Herman, Frank (15 December 1963). "Relativistic Corrections to the Band Structure of Tetrahedrally Bonded Semiconductors". Physical Review Letters. 11 (541): 541–545. Bibcode:1963PhRvL..11..541H. doi:10.1103/PhysRevLett.11.541.
  31. Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields". arXiv:astro-ph/0307133.
  32. Kaspi, Victoria M.; Beloborodov, Andrei M. (2017). "Magnetars". Annual Review of Astronomy and Astrophysics. 55 (1): 261–301. arXiv:1703.00068. Bibcode:2017ARA&A..55..261K. doi:10.1146/annurev-astro-081915-023329.
  33. Kong, Ling-Da; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Doroshenko, Victor; Santangelo, Andrea; Chen, Yu-Peng; Lu, Fang-Jun; Ge, Ming-Yu; Wang, Peng-Ju; Tao, Lian; Qu, Jin-Lu; Li, Ti-Pei; Liu, Cong-Zhan; Liao, Jin-Yuan (2022-07-01). "Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124". The Astrophysical Journal Letters. 933 (1): L3. arXiv:2206.04283. Bibcode:2022ApJ...933L...3K. doi:10.3847/2041-8213/ac7711. ISSN 2041-8205.
  34. "Astronomers measure strongest magnetic field ever detected". New Atlas. 2022-07-15. Retrieved 2022-08-22.
  35. Tuchin, Kirill (2013). "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions". Adv. High Energy Phys. 2013: 490495. arXiv:1301.0099. doi:10.1155/2013/490495. S2CID 4877952.
  36. Bzdak, Adam; Skokov, Vladimir (29 March 2012). "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions". Physics Letters B. 710 (1): 171–174. arXiv:1111.1949. Bibcode:2012PhLB..710..171B. doi:10.1016/j.physletb.2012.02.065. S2CID 118462584.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.