The book Mathematical Foundations of Quantum Mechanics (1932) by John von Neumann is an important early work in the development of quantum theory.[1]

Publication history

The book was originally published in German in 1932 by Julius Springer, under the title Mathematische Grundlagen der Quantenmechanik.[2] An English translation by Robert T. Beyer was published in 1955 by Princeton University Press. A Russian translation, edited by N. Bogolyubov, was published by Nauka in 1964. A new English edition, edited by Nicholas A. Wheeler, was published in 2018 by Princeton University Press.[3]

Significance

The book mainly summarizes results that von Neumann had published in earlier papers.[4][5][6][7][8] Its main significance may be its argument against the idea of hidden variables, on thermodynamic grounds.

See also

References

  1. Van Hove, Léon (1958). "Von Neumann's contributions to quantum theory". Bull. Amer. Math. Soc. 64 (3): 95–100. doi:10.1090/s0002-9904-1958-10206-2.
  2. Margenau, Henry (1933). "Book Review: Mathematische Grundlagen der Quantenmechanik". Bulletin of the American Mathematical Society. 39 (7): 493–495. doi:10.1090/S0002-9904-1933-05665-3. MR 1562667.
  3. John von Neumann (2018). Nicholas A. Wheeler (ed.). Mathematical Foundations of Quantum Mechanics. New Edition. Translated by Robert T. Beyer. Princeton University Press. ISBN 9781400889921.
  4. von Neumann, J. (1927). "Mathematische Begründung der Quantenmechanik [Mathematical Foundation of Quantum Mechanics]". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 1–57.
  5. von Neumann, J. (1927). "Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik [Probabilistic Theory of Quantum Mechanics]". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 245–272.
  6. von Neumann, J. (1927). "Thermodynamik quantenmechanischer Gesamtheiten [Thermodynamics of Quantum Mechanical Quantities]". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 102: 273–291.
  7. von Neumann, J. (1929). "Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren [General Eigenvalue Theory of Hermitian Functional Operators]". Mathematische Annalen: 49–131.
  8. von Neumann, J. (1931). "Die Eindeutigkeit der Schrödingerschen Operatoren [The uniqueness of Schrödinger operators]". Mathematische Annalen. 104: 570–578. doi:10.1007/bf01457956. S2CID 120528257.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.