The book Mathematical Foundations of Quantum Mechanics (1932) by John von Neumann is an important early work in the development of quantum theory.[1]
Publication history
The book was originally published in German in 1932 by Julius Springer, under the title Mathematische Grundlagen der Quantenmechanik.[2] An English translation by Robert T. Beyer was published in 1955 by Princeton University Press. A Russian translation, edited by N. Bogolyubov, was published by Nauka in 1964. A new English edition, edited by Nicholas A. Wheeler, was published in 2018 by Princeton University Press.[3]
Significance
The book mainly summarizes results that von Neumann had published in earlier papers.[4][5][6][7][8] Its main significance may be its argument against the idea of hidden variables, on thermodynamic grounds.
See also
References
- ↑ Van Hove, Léon (1958). "Von Neumann's contributions to quantum theory". Bull. Amer. Math. Soc. 64 (3): 95–100. doi:10.1090/s0002-9904-1958-10206-2.
- ↑ Margenau, Henry (1933). "Book Review: Mathematische Grundlagen der Quantenmechanik". Bulletin of the American Mathematical Society. 39 (7): 493–495. doi:10.1090/S0002-9904-1933-05665-3. MR 1562667.
- ↑ John von Neumann (2018). Nicholas A. Wheeler (ed.). Mathematical Foundations of Quantum Mechanics. New Edition. Translated by Robert T. Beyer. Princeton University Press. ISBN 9781400889921.
- ↑ von Neumann, J. (1927). "Mathematische Begründung der Quantenmechanik [Mathematical Foundation of Quantum Mechanics]". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 1–57.
- ↑ von Neumann, J. (1927). "Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik [Probabilistic Theory of Quantum Mechanics]". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 245–272.
- ↑ von Neumann, J. (1927). "Thermodynamik quantenmechanischer Gesamtheiten [Thermodynamics of Quantum Mechanical Quantities]". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 102: 273–291.
- ↑ von Neumann, J. (1929). "Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren [General Eigenvalue Theory of Hermitian Functional Operators]". Mathematische Annalen: 49–131.
- ↑ von Neumann, J. (1931). "Die Eindeutigkeit der Schrödingerschen Operatoren [The uniqueness of Schrödinger operators]". Mathematische Annalen. 104: 570–578. doi:10.1007/bf01457956. S2CID 120528257.
External links
- Full online text of the 1932 German edition (facsimile) at the University of Göttingen.