In abstract algebra, a branch of mathematics, a maximal semilattice quotient is a commutative monoid derived from another commutative monoid by making certain elements equivalent to each other.

Every commutative monoid can be endowed with its algebraic preordering ≤ . By definition, x y holds, if there exists z such that x+z=y. Further, for x, y in M, let hold, if there exists a positive integer n such that x≤ ny, and let hold, if and . The binary relation is a monoid congruence of M, and the quotient monoid is the maximal semilattice quotient of M.

This terminology can be explained by the fact that the canonical projection p from M onto is universal among all monoid homomorphisms from M to a (,0)-semilattice, that is, for any (,0)-semilattice S and any monoid homomorphism f: M→ S, there exists a unique (,0)-homomorphism such that f=gp.

If M is a refinement monoid, then is a distributive semilattice.

References

A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups. Vol. I. Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I. 1961. xv+224 p.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.