In mathematical physics, a PöschlTeller potential, named after the physicists Herta Pöschl[1] (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.

Definition

In its symmetric form is explicitly given by[2]

Symmetric PöschlTeller potential: . It shows the eigenvalues for μ=1, 2, 3, 4, 5, 6.

and the solutions of the time-independent Schrödinger equation

with this potential can be found by virtue of the substitution , which yields

.

Thus the solutions are just the Legendre functions with , and , . Moreover, eigenvalues and scattering data can be explicitly computed.[3] In the special case of integer , the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg-de Vries equation.[4]

The more general form of the potential is given by[2]

Rosen–Morse potential

A related potential is given by introducing an additional term:[5]

See also

References list

  1. ""Edward Teller Biographical Memoir." by Stephen B. Libby and Andrew M. Sessler, 2009 (published in Edward Teller Centennial Symposium: modern physics and the scientific legacy of Edward Teller, World Scientific, 2010" (PDF). Archived from the original (PDF) on 2017-01-18. Retrieved 2011-11-29.
  2. 1 2 Pöschl, G.; Teller, E. (1933). "Bemerkungen zur Quantenmechanik des anharmonischen Oszillators". Zeitschrift für Physik. 83 (3–4): 143–151. Bibcode:1933ZPhy...83..143P. doi:10.1007/BF01331132. S2CID 124830271.
  3. Siegfried Flügge Practical Quantum Mechanics (Springer, 1998)
  4. Lekner, John (2007). "Reflectionless eigenstates of the sech2 potential". American Journal of Physics. 875 (12): 1151–1157. Bibcode:2007AmJPh..75.1151L. doi:10.1119/1.2787015.
  5. Barut, A. O.; Inomata, A.; Wilson, R. (1987). "Algebraic treatment of second Poschl-Teller, Morse-Rosen and Eckart equations". Journal of Physics A: Mathematical and General. 20 (13): 4083. Bibcode:1987JPhA...20.4083B. doi:10.1088/0305-4470/20/13/017. ISSN 0305-4470.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.