Phosphide iodides or iodide phosphides are compounds containing anions composed of iodide (I−) and phosphide (P3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, arsenide iodides antimonide iodides and phosphide bromides.
Phosphorus can form clusters or chains in these compounds, so that some are 1-dimensional or fibrous.
Phosphide iodides are often metallic, black or dark red in colour.
List
formula | system | space group | unit cell Å | volume | density | comment | ref |
---|---|---|---|---|---|---|---|
[Si40P6]I6.5 | cubic | Pm3n | a=10.1293 Z=1 | 1039.3 | 3.412 | clathrate | [1] |
K4P21I | orthorhombic | Ccmm | a = 12.853; b = 21.795; c = 9.748 Z = 4 | 2730.7 | 2.271 | ruby red;sensitive to air | [2] |
Ca2PI | trigonal | R3m | a=4.30 c=22.17 | 3.2 | yellow | [3] | |
Ca3PI3 | cubic | I4132 | a=12.31 Z=8 | 3.78 | colourless | [3] | |
Cu2P3I2 | monoclinic | P21c | a = 15.343, b = 12.925, c = 15.260, β = 116.38°, Z = 16 | band gap 0.72 eV; Cu ion conductor | [4][5][6] | ||
Cu3P15I2 | monoclinic | P21/n | a=9.667, b=19.475, c=9.886, β =108.75(2)°, Z=4 | 1762.4 | grey | [5][7] | |
(CuI)3P12 | monoclinic | P21 | a=12.846 b=13.857 c=9.651 β=109.43 Z=4 | 1620.2 | 3.866 | shiny | [5] |
(CuI)2P14 | monoclinic | P21/c | a = 9.919, b = 9.718, c = 16.478, β = 105.71°, Z = 4 | 1529.0 | 3.539 | [8] | |
(CuI)5P16S | [9] | ||||||
(CuI)3P4S4 | hexagonal | P63cm | a=19.082, c=6.691 Z=6 | 2109.9 | [10] | ||
(CuI)8P12 | monoclinic | P121/c1 | a=15.343, b=12.925, c=15.26, β=116.38 | 4.64 | [11] | ||
Ge38P8I8 | Cubic | P43n | a=10.507 | silvery | [12] | ||
(CuI)5P16Se | [9] | ||||||
(CuI)2P8Se3 | Pbcm | a=9.1348 b=12.351 c=13.873 Z=4 | 1565.2 | 3.673 | red; melt 408 °C; P8Se3 clusters | [13] | |
(CuI)3P4Se4 | hexagonal | P63cm | a = 19.601, c = 6.7196, Z = 6 | orange | [14] | ||
Zn3PI3 | cubic | F42m | a=5.945 | 4.87 | dark grey; dec 300 °C | [15] | |
(ZnI2)6ZnSP4S3 | [11] | ||||||
(ZnI2)6ZnSeP4Se3 | cubic | F43c | a=19.542 | 7463.1 | 4.325 | brown | [11] |
Rb4P21I | orthorhombic | Ccmm | a = 13.281; b = 21.868; c = 9.771 Z=4 | 2838.1 | 2.619 | dark red | [2] |
Sr2P7I | cubic | P213 | a=10.25 | dark red; contains heptaphosphanortricyclane | [16] | ||
Zr6I14P | orthorhombic | Cmca | [17] | ||||
Ag2P3I2 | monoclinic | Ag ion conductor | [4] | ||||
(AgI)2Ag3PS4 | hexagonal | P63mc | a=7.395 c=12.224 Z=2 | 579.1 | Ag ion conductor | [18] | |
Cd2P3I | monoclinic | C2/c | a=8.255 b=9.304 c=7.514 β =99.66 | [19] | |||
Cd3PI3 | hexagonal | P63mc | band gap 2.44 eV | [20] | |||
Cd4P2I3 | orthorhombic | Pbca | a=12.890 b=12.725 c=12.654 | P24− | [19] | ||
SnIP | soft and flexible; double helix SnI+ and P-; band gap 1.9 eV | [21][22] | |||||
Sn24P19.3I8 | cubic | Pm3n | a=10.9554 | [23] | |||
Sn24P19.3BrxI8−x | cubic | Pm3n | [24] | ||||
Sn24P19.3(2)ClyI8−y (y ≤ 0.8) | cubic | Pm3n | [24] | ||||
Sn20Zn4P20.8I8 | cubic | Pm3n | a=10.883 Z=1 | [25] | |||
Sn17Zn7P22I8 | cubic | Pm3n | a=10.8458 Z=1 | [25] | |||
Sn14In10P22I8 | cubic | Pm3n | a=11.0450 Z=1 | 1347.4 | 5.535 | black | [26] |
Sn14In10P21.2I8 | P42/m | a=24.745, c=11.067, Z=5 | 6776 | 5.521 | black | [26] | |
[Ge30.5Sn7.7P7.75]I7.88 | cubic | Pm3n | a=10.721 Z=1 | [27] | |||
Sn24AsxP19.3−xI8 | cubic | Pm3n | a = 10.9358—11.1495 | [28] | |||
Cs0.35Zr6I14P | orthorhombic | Cmca | a=15.934 b=14.287 c=12.939 Z=4 | black | [17] | ||
Ba2P7I | monoclinic | P21/m | a=6.3538 b=6.8990 c=12.0392 β =95.515 Z=2 | 524.93 | 3.912 | orange-yellow; water sensitive | [29] |
Ba3P3I2 | orthorhombic | Pnma | a = 17.195, b = 4.624, c = 14.272, Z = 4, | [30] | |||
Ba5P5I3 | monoclinic | C2/m | a = 42.664, b = 4.56.3, c = 9.431, β = 92.20, Z = 4 | [30] | |||
La2PI2 | trigonal | P3m1 | a=4.236 c=10.121 Z=1 | 157.25 | 4.95 | [31] | |
Eu2PI | R3m | a = 4.445, c = 23.12.6, Z = 3 | [32] | ||||
Eu2P7I | cubic | P213 | dark red; contains heptaphosphanortricyclane; band gap 1.7 eV | [16] | |||
Au7P10I | trigonal | P31m | a=6.180 c=11.122 Z=1 | [33] | |||
Hg9P5I6 | monoclinic | a=13.112 b=12.486 c=17.031 β=119.90 | [34] | ||||
Hg4ZnPI4 | monoclinic | P21 | a = 7.850, b = 12.719, c = 7.861, β = 119.52°, Z = 2 | like Millon phases | [35] | ||
Hg7Ag2P8I6 | monoclinic | C12/m1 | a=13.146 b=11.037 c=8.336 β=102.210 Z=2 | 1182.1 | 7.386 | black | [36] |
Hg12Ag41P88I41 | cubic | Fm3 | a=26.705 Z=4 | 19045 | 5.147 | dark red; air stable; P113− clusters | [37] |
HgAg6P20I2 | monoclinic | P21/m | a = 6.718, b = 27.701, c = 7.383, β = 113.98°, Z = 2 | [38] |
References
- ↑ Kovnir, Kirill A.; Uglov, Alexei N.; Zaikina, Julia V.; Shevelkov, Andrei V. (January 2004). "New cationic clathrate: synthesis and structure of [Si40P6]I6.5". Mendeleev Communications. 14 (4): 135–136. doi:10.1070/MC2004v014n04ABEH001945.
- 1 2 Hönle, Wolfgang; Schmettow, Walter; Peters, Karl; Chang, Jen-Hui; von Schnering, Hans Georg (October 2004). "The Henicosaphosphide Iodides of Potassium and Rubidium, K4P21I and Rb4P21I". Zeitschrift für anorganische und allgemeine Chemie (in German). 630 (12): 1858–1862. doi:10.1002/zaac.200400211. ISSN 0044-2313.
- 1 2 Hamon, Christian; Marchand, Roger; Laurent, Yves; Lang, Jean (1974). "Étude d'halogénopnictures. III. Structure de Ca2PI et Ca3PI3. Surstructures de type NaCl". Bulletin de Minéralogie. 97 (1): 6–12. doi:10.3406/bulmi.1974.6909.
- 1 2 Möller, M.H.; Jeitschko, W. (November 1986). "Preparation, properties, and crystal structure of the solid electrolytes Cu2P3I2 and Ag2P3I2". Journal of Solid State Chemistry. 65 (2): 178–189. Bibcode:1986JSSCh..65..178M. doi:10.1016/0022-4596(86)90052-6.
- 1 2 3 Pfitzner, Arno; Freudenthaler, Eva (1995-08-18). "(CuI)3P12: A Solid Containing a New Polymer of Phosphorus Predicted by Theory". Angewandte Chemie International Edition in English. 34 (15): 1647–1649. doi:10.1002/anie.199516471. ISSN 0570-0833.
- ↑ Freudenthaler, Eva; Pfitzner, Arno; Sinclair, Derek C. (February 1996). "Electrical properties of Cu2P3I2". Materials Research Bulletin. 31 (2): 171–176. doi:10.1016/0025-5408(95)00176-X.
- ↑ Pfitzner, A.; Freudenthaler, E. (1995-01-01). Pfitzner, A.; Freudenthaler, E. (eds.). "Crystal structure of tricopper(I) pentadecaphosphide diiodide, Cu 3 P 15 I 2". Zeitschrift für Kristallographie - Crystalline Materials. 210 (1): 59. Bibcode:1995ZK....210...59P. doi:10.1524/zkri.1995.210.1.59. ISSN 2194-4946.
- ↑ Pfitzner, Amo; Freudenthaler, Eva (1997-02-01). "(CuI) 2 P 14 : ein neues Phosphorpolymer in einer Kupferhalogenid-Matrix /(CuI) 2 P 14 : a Novel Phosphorus Polymer in a Copper Halide Matrix". Zeitschrift für Naturforschung B. 52 (2): 199–202. doi:10.1515/znb-1997-0209. ISSN 1865-7117. S2CID 101576257.
- 1 2 Freudenthaler, E (November 1997). "Copper(I) halide-phosphorus adducts: a new family of copper(I) ion conductors" (PDF). Solid State Ionics. 101–103: 1053–1059. doi:10.1016/S0167-2738(97)00169-0.
- ↑ Reiser, Sara; Brunklaus, Gunther; Hong, Jung Hoon; Chan, Jerry C. C.; Eckert, Hellmut; Pfitzner, Arno (2002). "(CuI)3P4S4: Preparation, Structural, and NMR Spectroscopic Characterization of a Copper(I) Halide Adduct with β-P4S4" (PDF). Chemistry - A European Journal. 8 (18): 4228–4233. doi:10.1002/1521-3765(20020916)8:18<4228::AID-CHEM4228>3.0.CO;2-V. PMID 12298013.
- 1 2 3 Hong, Jung Hoon (2005). The host/guest clathrate system [(ZnI2)6(ZnQ)]/[Pn4Qx] (Pn=P, As; Q=S, Se). A qualitative approach to structures, identification and synthesis (phd). doi:10.5283/EPUB.10245.
- ↑ von Schnering, Hans-Georg; Menke, Heinz (January 1972). "Ge38P8I8 and Ge38As8I8, a New Class of Compounds with Clathrate Structure". Angewandte Chemie International Edition in English. 11 (1): 43–44. doi:10.1002/anie.197200431. ISSN 0570-0833.
- ↑ Pfitzner, Arno; Reiser, Sara; Nilges, Tom (2000). "(CuI)2P8Se3: An Adduct ofD3-Symmetrical P8Se3 Cage Molecules with Cu2I2 Rhomboids". Angewandte Chemie. 39 (22): 4160–4162. doi:10.1002/1521-3773(20001117)39:22<4160::AID-ANIE4160>3.0.CO;2-8. PMID 11093240.
- ↑ Pfitzner, A.; Reiser, Sara (1999-05-01). "(CuI) 3 P 4 Se 4 : β-P 4 Se 4 Cages between Columns of Copper Iodide". Inorganic Chemistry. 38 (10): 2451–2454. doi:10.1021/ic981042f. ISSN 0020-1669.
- ↑ Suchow, Lawrence; Witzen, Margaret Berry; Stemple, Norman R. (May 1963). "Zinc Phosphide Iodide (Zn 3 PI 3 ) and Zinc Arsenide Iodide (Zn 3 AsI 3 ): New Compounds with Disordered Defect Zincblende Structure". Inorganic Chemistry. 2 (3): 441–444. doi:10.1021/ic50007a003. ISSN 0020-1669.
- 1 2 Dolyniuk, Juli-Anna; Lee, Shannon; Tran, Nhon; Wang, Jian; Wang, Lin-Lin; Kovnir, Kirill (July 2018). "Eu2P7X and Ba2As7X (X = Br, I): Chiral double-Zintl salts containing heptapnictotricyclane clusters". Journal of Solid State Chemistry. 263: 195–202. Bibcode:2018JSSCh.263..195D. doi:10.1016/j.jssc.2018.04.026. S2CID 103274102.
- 1 2 Rosenthal, Guy; Corbett, John D. (January 1988). "Zirconium iodide clusters that encapsulate silicon, germanium, phosphorus, or pyrex". Inorganic Chemistry. 27 (1): 53–56. doi:10.1021/ic00274a012. ISSN 0020-1669.
- ↑ Jabłońska, Marta; Pfitzner, Arno (September 2004). "Preparation and Crystal Structure of (AgI)2Ag3PS4". Zeitschrift für anorganische und allgemeine Chemie (in German). 630 (11): 1731. doi:10.1002/zaac.200470078. ISSN 0044-2313.
- 1 2 Shevelkov, A. V.; Shatruk, M. M. (2001). "Mercury and cadmium pnictidehalides: the inverted Zintl phases". Russian Chemical Bulletin. 50 (3): 337–352. doi:10.1023/A:1011351532249. S2CID 94548971.
- ↑ Yang, He‐Di; Ran, Mao‐Yin; Wei, Wen‐Bo; Wu, Xin‐Tao; Lin, Hua; Zhu, Qi‐Long (2021-11-02). "The Rise of Infrared Nonlinear Optical Pnictides: Advances and Outlooks". Chemistry: An Asian Journal. 16 (21): 3299–3310. doi:10.1002/asia.202100935. ISSN 1861-4728. PMID 34469055. S2CID 237372337.
- ↑ Purschke, David N.; Pielmeier, Markus R. P.; Üzer, Ebru; Ott, Claudia; Jensen, Charles; Degg, Annabelle; Vogel, Anna; Amer, Naaman; Nilges, Tom; Hegmann, Frank A. (August 2021). "Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires". Advanced Materials. 33 (34): 2100978. arXiv:2101.05459. Bibcode:2021AdM....3300978P. doi:10.1002/adma.202100978. ISSN 0935-9648. PMID 34278600. S2CID 231603155.
- ↑ Hoff, Diego A.; Rego, Luis G. C. (2021-10-13). "Chirality-Induced Propagation Velocity Asymmetry". Nano Letters. 21 (19): 8190–8196. arXiv:2109.03629. Bibcode:2021NanoL..21.8190H. doi:10.1021/acs.nanolett.1c02636. ISSN 1530-6984. PMID 34551246. S2CID 237439225.
- ↑ Novikov, Vladimir V.; Matovnikov, Alexander V.; Avdashchenko, Dmitrii V.; Mitroshenkov, Nikolai V.; Dikarev, Evgeny; Takamizawa, Satoshi; Kirsanova, Maria A.; Shevelkov, Andrei V. (April 2012). "Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn24P19.3I8". Journal of Alloys and Compounds. 520: 174–179. doi:10.1016/j.jallcom.2011.12.171.
- 1 2 Zaikina, Julia V.; Schnelle, Walter; Kovnir, Kirill A.; Olenev, Andrei V.; Grin, Yuri; Shevelkov, Andrei V. (August 2007). "Crystal structure, thermoelectric and magnetic properties of the type-I clathrate solid solutions Sn24P19.3(2)BrxI8−x (0≤x≤8) and Sn24P19.3(2)ClyI8−y (y≤0.8)". Solid State Sciences. 9 (8): 664–671. doi:10.1016/j.solidstatesciences.2007.05.008.
- 1 2 Kovnir, Kirill A.; Shatruk, Mikhail M.; Reshetova, Lyudmila N.; Presniakov, Igor A.; Dikarev, Evgeny V.; Baitinger, Michael; Haarmann, Frank; Schnelle, Walter; Baenitz, Michael; Grin, Yuri; Shevelkov, Andrei V. (August 2005). "Novel compounds Sn20Zn4P22−vI8 (), Sn17Zn7P22I8, and Sn17Zn7P22Br8: Synthesis, properties, and special features of their clathrate-like crystal structures". Solid State Sciences. 7 (8): 957–968. doi:10.1016/j.solidstatesciences.2005.04.002.
- 1 2 Shatruk, Mikhail M.; Kovnir, Kirill A.; Lindsjö, Martin; Presniakov, Igor A.; Kloo, Lars A.; Shevelkov, Andrei V. (November 2001). "Novel Compounds Sn10In14P22I8 and Sn14In10P21.2I8 with Clathrate I Structure: Synthesis and Crystal and Electronic Structure". Journal of Solid State Chemistry. 161 (2): 233–242. Bibcode:2001JSSCh.161..233S. doi:10.1006/jssc.2001.9304.
- ↑ Kirsanova, M. A.; Reshetova, L. N.; Olenev, A. V.; Shevelkov, A. V. (March 2012). "On the crystal structure of the germanium-based cationic clathrates [Ge38.3Sb7.7]I7.44, [Ge38.1P7.9]I8, and [Ge30.5Sn7.7P7.75]I7.88". Russian Journal of Coordination Chemistry. 38 (3): 192–199. doi:10.1134/S1070328412030062. ISSN 1070-3284. S2CID 98413981.
- ↑ Kelm, E. A.; Zaikina, Yu. V.; Dikarev, E. V.; Shevelkov, A. V. (April 2009). "Distribution of phosphorus and arsenic atoms in the solid solution Sn24As x P19.3-x I8 with the structure of clathrate-I". Russian Chemical Bulletin. 58 (4): 746–750. doi:10.1007/s11172-009-0089-0. ISSN 1066-5285. S2CID 93897495.
- ↑ Dolyniuk, Juli-Anna; Kovnir, Kirill (2013-08-26). "Zintl Salts Ba2P7X (X = Cl, Br, and I): Synthesis, Crystal, and Electronic Structures". Crystals. 3 (3): 431–442. doi:10.3390/cryst3030431. ISSN 2073-4352.
- 1 2 Nuss, Jürgen; Jansen, Martin (March 2003). "Ba3P3I2 und Ba5P5I3: Stufenweise Oxidation von Bariumphosphid mit Iod". Zeitschrift für anorganische und allgemeine Chemie (in German). 629 (3): 387–393. doi:10.1002/zaac.200390064. ISSN 0044-2313.
- ↑ Oeckler, Oliver; Mattausch, Hansjürgen; Simon, Arndt (2007-11-01). "Einige Phosphidhalogenide des Lanthans und verwandte Verbindungen/ Some Phosphide Halides of Lanthanum and Related Compounds". Zeitschrift für Naturforschung B. 62 (11): 1377–1382. doi:10.1515/znb-2007-1105. ISSN 1865-7117. S2CID 95077294.
- ↑ Hadenfeldt, C.; Held, W. (September 1986). "Darstellung, eigenschaften und kristallstruktur der Europium(ii)-phosphidhalogenide Eu2PCl, Eu2PBr und Eu2PI". Journal of the Less Common Metals (in German). 123 (1–2): 25–35. doi:10.1016/0022-5088(86)90111-6.
- ↑ Jeitschko, W.; Möller, M. H. (1979-03-01). "The crystal structures of Au 2 P 3 and Au 7 P 10 I, polyphosphides with weak Au–Au interactions". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 35 (3): 573–579. doi:10.1107/S0567740879004180. ISSN 0567-7408.
- ↑ Ledésert, Μ; Rebbah, A.; Labbé, Ph (1990-11-01). "Hg9P5I6: a new mercury(I, II) structural determination". Zeitschrift für Kristallographie - Crystalline Materials (in German). 192 (1–4): 223–232. doi:10.1524/zkri.1990.192.14.223. ISSN 2196-7105. S2CID 96887350.
- ↑ OLENEV, A.V.; SHEVEL'KOV, A.V.; POPOVKIN, B.A. (1999). "NEW PHOSPHORUS ANALOGUE OF MILLON'S PHASES (HG2P)2ZNI4: SYNTHESIS AND STRUCTURE". Russian Journal of Inorganic Chemistry. 44 (11): 1814–1816.
- ↑ Oleneva, Olga S.; Olenev, Andrei V.; Shestimerova, Tatiana A.; Baranov, Alexey I.; Dikarev, Evgeny V.; Shevelkov, Andrei V. (2005-12-01). "Reduction of the Host Cationic Framework Charge by Isoelectronic Substitution: Synthesis and Structure of Hg 7 Ag 2 P 8 X 6 (X = Br, I) and Hg 6 Ag 4 P 8 Br 6". Inorganic Chemistry. 44 (26): 9622–9624. doi:10.1021/ic0513944. ISSN 0020-1669. PMID 16363825.
- ↑ Oleneva, O. S.; Shestimerova, T. A.; Olenev, A. V.; Dikarev, E. V.; Shevelkov, A. V. (October 2007). "Synthesis and crystal structure of new double mercury silver phosphide iodide Hg12Ag41P88I41". Russian Chemical Bulletin. 56 (10): 1948–1952. doi:10.1007/s11172-007-0302-y. ISSN 1066-5285. S2CID 97426578.
- ↑ Oleneva, O.S.; Shestimerova, T.A.; Olenev, A.V.; Shevelkov, A.V. (July 2009). "Unprecedented ∞1(P103−) band anion in the crystal structure of HgAg6P20I2". Journal of Alloys and Compounds. 480 (1): 2–4. doi:10.1016/j.jallcom.2008.09.192.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.