Brake-specific fuel consumption (BSFC) is a measure of the fuel efficiency of any prime mover that burns fuel and produces rotational, or shaft power. It is typically used for comparing the efficiency of internal combustion engines with a shaft output.
It is the rate of fuel consumption divided by the power produced. In traditional units, it measures fuel consumption in pounds per hour divided by the brake horsepower, lb/(hp⋅h); in SI units, this corresponds to the inverse of the units of specific energy, kg/J = s2/m2.
It may also be thought of as power-specific fuel consumption, for this reason. BSFC allows the fuel efficiency of different engines to be directly compared.
The term "brake" here as in "brake horsepower" refers to a historical method of measuring torque (see Prony brake).
Calculation
The brake-specific fuel consumption is given by,
where:
- is the fuel consumption rate in grams per second (g/s)
- is the power produced in watts where (W)
- is the engine speed in radians per second (rad/s)
- is the engine torque in newton metres (N⋅m)
The above values of r, , and may be readily measured by instrumentation with an engine mounted in a test stand and a load applied to the running engine. The resulting units of BSFC are grams per joule (g/J)
Commonly BSFC is expressed in units of grams per kilowatt-hour (g/(kW⋅h)). The conversion factor is as follows:
- BSFC [g/(kW⋅h)] = BSFC [g/J] × 1/(3.6 × 106)
The conversion between metric and imperial units is:
- BSFC [g/(kW⋅h)] = BSFC [lb/(hp⋅h)] × 608.277
- BSFC [lb/(hp⋅h)] = BSFC [g/(kW⋅h)] × 0.001644
Relation to efficiency
To calculate the actual efficiency of an engine requires the energy density of the fuel being used.
Different fuels have different energy densities defined by the fuel's heating value. The lower heating value (LHV) is used for internal-combustion-engine-efficiency calculations because the heat at temperatures below 150 °C (300 °F) cannot be put to use.
Some examples of lower heating values for vehicle fuels are:
Thus a diesel engine's efficiency = 1/(BSFC × 0.0119531) and a gasoline engine's efficiency = 1/(BSFC × 0.0122225)
Operating values and as a cycle average statistic
Any engine will have different BSFC values at different speeds and loads. For example, a reciprocating engine achieves maximum efficiency when the intake air is unthrottled and the engine is running near its peak torque. The efficiency often reported for a particular engine, however, is not its maximum efficiency but a fuel economy cycle statistical average. For example, the cycle average value of BSFC for a gasoline engine is 322 g/(kW⋅h), translating to an efficiency of 25% (1/(322 × 0.0122225) = 0.2540). Actual efficiency can be lower or higher than the engine’s average due to varying operating conditions. In the case of a production gasoline engine, the most efficient BSFC is approximately 225 g/(kW⋅h), which is equivalent to a thermodynamic efficiency of 36%.
An iso-BSFC map (fuel island plot) of a diesel engine is shown. The sweet spot at 206 BSFC has 40.6% efficiency. The x-axis is rpm; y-axis is BMEP in bar (bmep is proportional to torque)
Engine design and class
BSFC numbers change a lot for different engine designs, and compression ratio and power rating. Engines of different classes like diesels and gasoline engines will have very different BSFC numbers, ranging from less than 200 g/(kW⋅h) (diesel at low speed and high torque) to more than 1,000 g/(kW⋅h) (turboprop at low power level).
Examples for shaft engines
The following table takes values as an example for the specific fuel consumption of several types of engines. For specific engines values can and often do differ from the table values shown below. Energy efficiency is based on a lower heating value of 42.7 MJ/kg (84.3 g/(kW⋅h)) for diesel fuel and jet fuel, 43.9 MJ/kg (82 g/(kW⋅h)) for gasoline.
kW | hp | Year | Engine | Type | Application | lb/(hp⋅h) | g/(kW⋅h) | efficiency |
---|---|---|---|---|---|---|---|---|
48 | 64 | 1989 | Rotax 582 | gasoline, 2-stroke | Aviation, Ultralight, Eurofly Fire Fox | 0.699 | 425[1] | 19.3% |
321 | 431 | 1987 | PW206B/B2 | turboshaft | Helicopter, EC135 | 0.553 | 336[2] | 24.4% |
427 | 572 | 1987 | PW207D | turboshaft | Helicopter, Bell 427 | 0.537 | 327[2] | 25.1% |
500 | 670 | 1981 | Arrius 2B1/2B1A-1 | turboshaft | Helicopter, EC135 | 0.526 | 320[2] | 25.6% |
13.1 | 17.8 | 1897 | Motor 250/400[3] | Diesel, four-stroke | Stationary industrial Diesel engine | 0.533 | 324 | 26.2% |
820 | 1,100 | 1960 | PT6C-67C | turboshaft | Helicopter, AW139 | 0.490 | 298[2] | 27.5% |
515 | 691 | 1991 | Mazda R26B[4] | Wankel, four-rotor | Race car, Mazda 787B | 0.470 | 286 | 28.7% |
958 | 1,285 | 1989 | MTR390 | turboshaft | Helicopter, Tiger | 0.460 | 280[2] | 29.3% |
84.5 | 113.3 | 1996 | Rotax 914 | gasoline, turbo | Aviation, Light-sport aircraft, WT9 Dynamic | 0.454 | 276[5] | 29.7% |
88 | 118 | 1942 | Lycoming O-235-L | gasoline | Aviation, General aviation, Cessna 152 | 0.452 | 275[6] | 29.8% |
1,770 | 2,380 | 1973 | GE T700 | turboshaft | Helicopter, AH-1/UH-60/AH-64 | 0.433 | 263[7] | 31.1% |
3,781 | 5,071 | 1995 | PW150 | turboprop | Airliner, Dash 8-400 | 0.433 | 263[2] | 31.1% |
1,799 | 2,412 | 1984 | RTM322-01/9 | turboshaft | Helicopter, NH90 | 0.420 | 255[2] | 32.1% |
63 | 84 | 1991 | GM Saturn I4 engine | gasoline | Cars, Saturn S-Series | 0.411 | 250[8] | 32.8% |
150 | 200 | 2011 | Ford EcoBoost | gasoline, turbo | Cars, Ford | 0.403 | 245[9] | 33.5% |
300 | 400 | 1961 | Lycoming IO-720 | gasoline | Aviation, General aviation, PAC Fletcher | 0.4 | 243[10] | 34.2% |
5,600 | 7,500 | 1989 | GE T408 | turboshaft | Helicopter, CH-53K | 0.4 | 240[7] | 33.7% |
7,000 | 9,400 | 1986 | Rolls-Royce MT7 | gas turbine | Hovercraft, SSC | 0.3998 | 243.2[11] | 34.7% |
2,000 | 2,700 | 1945 | Wright R-3350 Duplex-Cyclone | gasoline, turbo-compound | Aviation, Commercial aviation; B-29, Constellation, DC-7 | 0.380 | 231[12] | 35.5% |
57 | 76 | 2003 | Toyota 1NZ-FXE | gasoline | Car, Toyota Prius | 0.370 | 225[13] | 36.4% |
8,251 | 11,065 | 2005 | Europrop TP400 | turboprop | Airbus A400M | 0.350 | 213[14] | 39.6% |
550 | 740 | 1931 | Junkers Jumo 204 | diesel two-stroke, turbo | Aviation, Commercial aviation, Junkers Ju 86 | 0.347 | 211[15] | 40% |
36,000 | 48,000 | 2002 | Rolls-Royce Marine Trent | turboshaft | Marine propulsion | 0.340 | 207[16] | 40.7% |
2,340 | 3,140 | 1949 | Napier Nomad | Diesel-compound | Concept Aircraft engine | 0.340 | 207[17] | 40.7% |
165 | 221 | 2000 | Volkswagen 3.3 V8 TDI | Diesel | Car, Audi A8 | 0.337 | 205[18] | 41.1% |
2,013 | 2,699 | 1940 | Deutz DZ 710 | Diesel two-stroke | Concept Aircraft engine | 0.330 | 201[19] | 41.9% |
42,428 | 56,897 | 1993 | GE LM6000 | turboshaft | Marine propulsion, Electricity generation | 0.329 | 200.1[20] | 42.1% |
130 | 170 | 2007 | BMW N47 2L | Diesel | Cars, BMW | 0.326 | 198[21] | 42.6% |
88 | 118 | 1990 | Audi 2.5L TDI | Diesel | Car, Audi 100 | 0.326 | 198[22] | 42.6% |
620 | 830 | Scania AB DC16 078A | Diesel 4-stroke | Electricity generation | 0.312 | 190[23] | 44.4% | |
1,200 | 1,600 | early 1990s | Wärtsilä 6L20 | Diesel 4-stroke | Marine propulsion | 0.311 | 189.4[24] | 44.5% |
3,600 | 4,800 | MAN Diesel 6L32/44CR | Diesel 4-stroke | Marine propulsion, Electricity generation | 0.283 | 172[25] | 49% | |
4,200 | 5,600 | 2015 | Wärtsilä W31 | Diesel 4-stroke | Marine propulsion, Electricity generation | 0.271 | 165[26] | 51.1% |
34,320 | 46,020 | 1998 | Wärtsilä-Sulzer RTA96-C | Diesel 2-stroke | Marine propulsion, Electricity generation | 0.263 | 160[27] | 52.7% |
27,060 | 36,290 | MAN Diesel S80ME-C9.4-TII | Diesel 2-stroke | Marine propulsion, Electricity generation | 0.254 | 154.5[28] | 54.6% | |
34,350 | 46,060 | MAN Diesel G95ME-C9 | Diesel 2-stroke | Marine propulsion | 0.254 | 154.5[29] | 54.6% | |
605,000 | 811,000 | 2016 | General Electric 9HA | Combined cycle gas turbine | Electricity generation | 0.223 | 135.5 (eq.) | 62.2%[30] |
640,000 | 860,000 | 2021 | General Electric 7HA.3 | Combined cycle gas turbine | Electricity generation (proposed) | 0.217 | 131.9 (eq.) | 63.9%[31] |
Turboprop efficiency is only good at high power; SFC increases dramatically for approach at low power (30% Pmax) and especially at idle (7% Pmax) :
Mode | Power | fuel flow | SFC | Energy efficiency |
---|---|---|---|---|
Nominal idle (7%) | 192 hp (143 kW) | 3.06 kg/min (405 lb/h) | 1,282 g/(kW⋅h) (2.108 lb/(hp⋅h)) | 6.6% |
Approach (30%) | 825 hp (615 kW) | 5.15 kg/min (681 lb/h) | 502 g/(kW⋅h) (0.825 lb/(hp⋅h)) | 16.8% |
Max cruise (78%) | 2,132 hp (1,590 kW) | 8.28 kg/min (1,095 lb/h) | 312 g/(kW⋅h) (0.513 lb/(hp⋅h)) | 27% |
Max climb (80%) | 2,192 hp (1,635 kW) | 8.38 kg/min (1,108 lb/h) | 308 g/(kW⋅h) (0.506 lb/(hp⋅h)) | 27.4% |
Max contin. (90%) | 2,475 hp (1,846 kW) | 9.22 kg/min (1,220 lb/h) | 300 g/(kW⋅h) (0.493 lb/(hp⋅h)) | 28.1% |
Take-off (100%) | 2,750 hp (2,050 kW) | 9.9 kg/min (1,310 lb/h) | 290 g/(kW⋅h) (0.477 lb/(hp⋅h)) | 29.1% |
See also
References
- ↑ "Operator Manual for 447/503/582" (PDF). Rotax. Sep 2010. Archived from the original (PDF) on 2017-07-22. Retrieved 2018-06-08.
- 1 2 3 4 5 6 7 "Gas Turbine Engines" (PDF). Aviation Week. January 2008.
- ↑ Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Vieweg (Springer), Braunschweig/Wiesbaden 1984, ISBN 978-3-528-14889-8, p. 7
- ↑ Shimizu, Ritsuharu; Tadokoro, Tomoo; Nakanishi, Toru; Funamoto, Junichi (1992-02-01). Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance Race. SAE International. p. 4. doi:10.4271/920309. ISSN 0148-7191.
- ↑ "Operator Manual for 914 series" (PDF). Rotax. Apr 2010. Archived from the original (PDF) on 2017-06-11. Retrieved 2018-06-08.
- ↑ O-235 and O-290 Operator's Manual (PDF), Lycoming, Jan 2007, p. 3-8 version-L
- 1 2 Peter deBock (September 18, 2019). GE turbines and small engines overview (PDF). ARPA-e INTEGRATE meeting. Global Research. General Electric.
- ↑ Michael Soroka (March 26, 2014). "Are Airplane Engines Inefficient?".
- ↑ "Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development" (PDF). Ford Research and Advanced Engineering. May 13, 2011.
- ↑ IO-720 Operator's Manual (PDF), Lycoming, October 2006, p. 3-8
- ↑ "MT7 Brochure" (PDF). Rolls-Royce. 2012. Archived from the original (PDF) on 2017-04-20. Retrieved 2018-07-09.
- ↑ Kimble D. McCutcheon (27 October 2014). "Wright R-3350 "Cyclone 18"" (PDF). Archived from the original (PDF) on 1 August 2016.
- ↑ Muta, Koichiro; Yamazaki, Makoto; Tokieda, Junji (8 March 2004). "Development of New-Generation Hybrid System THS II - Drastic Improvement of Power Performance and Fuel Economy". SAE Technical Paper Series. Vol. 1. Society of Automotive Engineers. doi:10.4271/2004-01-0064.
- ↑ Kaiser, Sascha; Donnerhack, Stefan; Lundbladh, Anders; Seitz, Arne (27–29 July 2015). A composite cycle engine concept with hecto-pressure ratio. AIAA/SAE/ASEE Joint Propulsion Conference (51st ed.). doi:10.2514/6.2015-4028.
- ↑ inter-action association, 1987
- ↑ "Marine Trent". Civil Engineering Handbook. 19 Mar 2015.
- ↑ "Napier Nomad". Flight. 30 April 1954.
- ↑ "The new Audi A8 3.3 TDI quattro: Top TDI for the luxury class" (Press release). Audi AG. July 10, 2000.
- ↑ "Jane's Fighting Aircraft of World War II". London, UK: Bracken Books. 1989.
- ↑ "LM6000 Marine Gas Turbine" (PDF). General Electric. 2016. Archived from the original (PDF) on 2016-11-19.
- ↑ "BMW 2.0d (N47)" (in French). Auto-innovations. June 2007.
- ↑ Stock, Dieter; Bauder, Richard (1 February 1990). "The New Audi 5-Cylinder Turbo Diesel Engine: The First Passenger Car Diesel Engine with Second Generation Direct Injection". SAE Technical Paper Series. Vol. 1. Society of Automotive Engineers. doi:10.4271/900648.
- ↑ "DC16 078A" (PDF). Scania AB.
- ↑ "Wärtsilä 20 product guide" (PDF). Wärtsilä. 14 February 2017.
- ↑ "Four-Stroke Propulsion Engines" (PDF). Man Diesel. 2015. Archived from the original (PDF) on 2016-04-17.
- ↑ "The new Wärtsilä 31 engine". Wärtsilä Technical Journal. 20 October 2015.
- ↑ "RTA-C Technology Review" (PDF). Wärtsilä. 2004. Archived from the original (PDF) on December 26, 2005.
- ↑ "MAN B&W S80ME-C9.4-TII Project Guide" (PDF). Man Diesel. May 2014.
- ↑ "MAN B&W G95ME-C9.2-TII Project Guide" (PDF). Man Diesel. May 2014. p. 16.
- ↑ Tomas Kellner (17 Jun 2016). "Here's Why The Latest Guinness World Record Will Keep France Lit Up Long After Soccer Fans Leave" (Press release). General Electric.
- ↑ "GE Unveils New H-Class Gas Turbine—and Already Has a First Order". October 2, 2019.
- ↑ "ATR: The Optimum Choice for a Friendly Environment" (PDF). Avions de Transport Regional. June 2001. p. PW127F engine gaseous emissions. Archived from the original (PDF) on 2016-08-08.
Further reading
- Reciprocating engine types
- HowStuffWorks: How Car Engines Work
- Reciprocating Engines at infoplease
- Piston Engines US Centennial of Flight Commission
- Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines
- Heywood J B 1988 Pollutant formation and control. Internal combustion engine fundamentals Int. edn (New York: Mc-Graw Hill) pp 572–577
- Well-to-Wheel Studies, Heating Values, and the Energy Conservation Principle
- Exemplary maps for commercial car engines collected by ecomodder forum users