SLC5A2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesSLC5A2, SGLT2, solute carrier family 5 member 2
External IDsOMIM: 182381 MGI: 2181411 HomoloGene: 2289 GeneCards: SLC5A2
Orthologs
SpeciesHumanMouse
Entrez

6524

246787

Ensembl

ENSG00000140675

ENSMUSG00000030781

UniProt

P31639

Q923I7

RefSeq (mRNA)

NM_003041

NM_133254

RefSeq (protein)

NP_003032

NP_573517

Location (UCSC)Chr 16: 31.48 – 31.49 MbChr 7: 127.86 – 127.87 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the SLC5A2 (solute carrier family 5 (sodium/glucose cotransporter)) gene.[5]

Function

SGLT2 is a member of the sodium glucose cotransporter family, which are sodium-dependent glucose transport proteins. SGLT2 is the major cotransporter involved in glucose reabsorption in the kidney.[6] SGLT2 is located in the early proximal tubule, and is responsible for reabsorption of 80-90% of the glucose filtered by the kidney glomerulus.[7] Most of the remaining glucose absorption is by sodium/glucose cotransporter 1 (SGLT1) in more distal sections of the proximal tubule.[8]

SGLT2 inhibitors for diabetes

SGLT2 inhibitors are also called gliflozins or flozins. They lead to a reduction in blood glucose levels, and therefore have potential use in the treatment of type 2 diabetes. Gliflozins enhance glycemic control as well as reduce body weight and systolic and diastolic blood pressure.[9] The gliflozins canagliflozin, dapagliflozin, and empagliflozin may lead to euglycemic ketoacidosis.[10][11] Other side effects of gliflozins include increased risk of Fournier gangrene[12] and of (generally mild) genital infections such as candidal vulvovaginitis.[13]

Clinical significance

Mutations in this gene are also associated with renal glycosuria.[14]

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000140675 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030781 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Wells RG, Mohandas TK, Hediger MA (Sep 1993). "Localization of the Na+/glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere". Genomics. 17 (3): 787–9. doi:10.1006/geno.1993.1411. PMID 8244402.
  6. "Entrez Gene: solute carrier family 5 (sodium/glucose cotransporter)".
  7. Bonora BM, Avogaro A, Fadini GP (2020). "Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence". Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 13: 161–174. doi:10.2147/DMSO.S233538. PMC 6982447. PMID 32021362.
  8. Vallon V, Thomson SC (2012). "Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney". Annual Review of Physiology. 74: 351–375. doi:10.1146/annurev-physiol-020911-153333. PMC 3807782. PMID 22335797.
  9. Haas B, Eckstein N, Pfeifer V, Mayer P, Hass MD (2014). "Efficacy, safety and regulatory status of SGLT2 inhibitors: focus on canagliflozin". Nutrition & Diabetes. 4 (11): e143. doi:10.1038/nutd.2014.40. PMC 4259905. PMID 25365416.
  10. Rawla, P; Vellipuram, AR; Bandaru, SS; Pradeep Raj, J (2017). "Euglycemic diabetic ketoacidosis: a diagnostic and therapeutic dilemma". Endocrinology, Diabetes & Metabolism Case Reports. 2017. doi:10.1530/EDM-17-0081. PMC 5592704. PMID 28924481.
  11. "FDA Drug Safety Communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood". Food and Drug Administration, USA. 2015-05-15.
  12. "SGLT2 Inhibitors Associated with Fournier Gangrene". Jwatch.org. Retrieved 2019-05-06.
  13. "SGLT2 Inhibitors (Gliflozins)". Diabetes.co.uk. Retrieved 2015-05-19.
  14. Calado J, Loeffler J, Sakallioglu O, Gok F, Lhotta K, Barata J, Rueff J (Mar 2006). "Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting". Kidney International. 69 (5): 852–5. doi:10.1038/sj.ki.5000194. PMID 16518345.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.