In mathematics, the Suslin homology is a homology theory attached to algebraic varieties. It was proposed by Suslin in 1987, and developed by Suslin and Voevodsky (1996). It is sometimes called singular homology as it is analogous to the singular homology of topological spaces.
By definition, given an abelian group A and a scheme X of finite type over a field k, the theory is given by
where C is a free graded abelian group whose degree n part is generated by integral subschemes of , where is an n-simplex, that are finite and surjective over .
References
- Geisser, Thomas (2009), On Suslin's singular homology and cohomology, arXiv:0912.1168, Bibcode:2009arXiv0912.1168G
- Levine, Marc (1997), "Homology of algebraic varieties: an introduction to the works of Suslin and Voevodsky", Bull. Amer. Math. Soc. (N.S.), 34 (3): 293–312, doi:10.1090/s0273-0979-97-00723-4, MR 1432056
- Suslin, Andrei; Voevodsky, Vladimir (1996), "Singular homology of abstract algebraic varieties", Invent. Math., 123 (1): 61–94, Bibcode:1996InMat.123...61S, CiteSeerX 10.1.1.46.9175, doi:10.1007/bf01232367, MR 1376246
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.