In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes,[1] and more generally that all the Galois cohomology groups Hi(K, K*) vanish for i  1. This result is used to calculate the étale cohomology groups of an algebraic curve.

The theorem was published by Chiungtze C. Tsen in 1933.

See also

References

  1. Lorenz, Falko (2008). Algebra. Volume II: Fields with Structure, Algebras and Advanced Topics. Springer. p. 181. ISBN 978-0-387-72487-4. Zbl 1130.12001.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.