In mathematics, a weakly symmetric space is a notion introduced by the Norwegian mathematician Atle Selberg in the 1950s as a generalisation of symmetric space, due to Élie Cartan. Geometrically the spaces are defined as complete Riemannian manifolds such that any two points can be exchanged by an isometry, the symmetric case being when the isometry is required to have period two. The classification of weakly symmetric spaces relies on that of periodic automorphisms of complex semisimple Lie algebras. They provide examples of Gelfand pairs, although the corresponding theory of spherical functions in harmonic analysis, known for symmetric spaces, has not yet been developed.

References

  • Akhiezer, D. N.; Vinberg, E. B. (1999), "Weakly symmetric spaces and spherical varieties", Transf. Groups, 4: 3–24, doi:10.1007/BF01236659, S2CID 124032062
  • Helgason, Sigurdur (1978), Differential geometry, Lie groups and symmetric spaces, Academic Press, ISBN 0-12-338460-5
  • Kac, V. G. (1990), Infinite dimensional Lie algebras (3rd ed.), Cambridge University Press, ISBN 0-521-46693-8
  • Kobayashi, Toshiyuki (2002). "Branching problems of unitary representations". Proceedings of the International Congress of Mathematicians, Vol. II. Beijing: Higher Ed. Press. pp. 615–627.
  • Kobayashi, Toshiyuki (2004), "Geometry of multiplicity-free representations of GL(n), visible actions on flag varieties, and triunity", Acta Appl. Math., 81: 129–146, doi:10.1023/B:ACAP.0000024198.46928.0c, S2CID 14530010
  • Kobayashi, Toshiyuki (2007), "A generalized Cartan decomposition for the double coset space (U(n1)×U(n2)×U(n3))\U(n)/(U(p)×U(q))", J. Math. Soc. Jpn., 59: 669–691
  • Krämer, Manfred (1979), "Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen", Compositio Mathematica (in German), 38: 129–153
  • Matsuki, Toshihiko (1991), "Orbits on flag manifolds", Proceedings of the International Congress of Mathematicians, Vol. II, 1990 Kyoto, Math. Soc. Japan, pp. 807–813
  • Matsuki, Toshihiko (2013), "An example of orthogonal triple flag variety of finite type", J. Algebra, 375: 148–187, CiteSeerX 10.1.1.750.7197, doi:10.1016/j.jalgebra.2012.11.012, S2CID 119132477
  • Mikityuk, I. V. (1987), "On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces", Math. USSR Sbornik, 57 (2): 527–546, Bibcode:1987SbMat..57..527M, doi:10.1070/SM1987v057n02ABEH003084
  • Selberg, A. (1956), "Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces, with applications to Dirichlet series", J. Indian Math. Society, 20: 47–87
  • Stembridge, J. R. (2001), "Multiplicity-free products of Schur functions", Annals of Combinatorics, 5 (2): 113–121, doi:10.1007/s00026-001-8008-6, hdl:2027.42/41839, S2CID 18105235
  • Stembridge, J. R. (2003), "Multiplicity-free products and restrictions of Weyl characters", Representation Theory, 7 (18): 404–439, doi:10.1090/S1088-4165-03-00150-X
  • Vinberg, É. B. (2001), "Commutative homogeneous spaces and co-isotropic symplectic actions", Russian Math. Surveys, 56 (1): 1–60, Bibcode:2001RuMaS..56....1V, doi:10.1070/RM2001v056n01ABEH000356, S2CID 250919435
  • Wolf, J. A.; Gray, A. (1968), "Homogeneous spaces defined by Lie group automorphisms. I, II", Journal of Differential Geometry, 2: 77–114, 115–159
  • Wolf, J. A. (2007), Harmonic Analysis on Commutative Spaces, American Mathematical Society, ISBN 978-0-8218-4289-8
  • Ziller, Wolfgang (1996), "Weakly symmetric spaces", Topics in geometry, Progr. Nonlinear Differential Equations Appl., vol. 20, Boston: Birkhäuser, pp. 355–368
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.