The Wright omega function along part of the real axis

In mathematics, the Wright omega function or Wright function,[note 1] denoted ω, is defined in terms of the Lambert W function as:

Uses

One of the main applications of this function is in the resolution of the equation z = ln(z), as the only solution is given by z = eω(π i).

y = ω(z) is the unique solution, when for x  1, of the equation y + ln(y) = z. Except on those two rays, the Wright omega function is continuous, even analytic.

Properties

The Wright omega function satisfies the relation .

It also satisfies the differential equation

wherever ω is analytic (as can be seen by performing separation of variables and recovering the equation ), and as a consequence its integral can be expressed as:

Its Taylor series around the point takes the form :

where

in which

is a second-order Eulerian number.

Values

Plots

Notes

  1. Not to be confused with the Fox–Wright function, also known as Wright function.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.