μ算子

μ算子英語:)或者极小化算子(),无界查找算子()在可计算性理论中,被用來尋找给定性质下的最小自然数

定义

R( y, x1 , . . ., xk ) 是固定的在自然数上的 k+1 元关系。低洼“μy”,在无界和有界形式下,都是从自然数 { 0, 1, 2, . . . } 到自然数的“数论函数”。但是,“μy”包含在谓词被满第三代 有界μ算子最早出现在 Kleene(1952年)书中的“第4章原始递归函数,§45 谓词,素因子表示”中:大幅度

“μyy<zR(y)。最小的 y < z 使得 R(y),如果 (Ey)y<z R(y);否则 z”。 (p.225)

Kleene 提示说对变量 y 的值域的 6 个不等式限制中任何一个都是允许的,它们是 y < z, y ≤ z, w < y < z, w < y ≤ z, w ≤ y < z, w ≤ y ≤ z。“当指示的值域不包含 y 使得 R(y) [为“真”]的时候,“μy”表达式的值是值域的基数”(p. 226);这是缺省“z”出现在上述定义中的原因。如下面要证明的,有界μ算子“μyy<z”是凭借两个原始递归函数有限和 Σ 与有限积 Π,“做测试”的一个谓词函数,和转换 { t, f } 到 { 0, 1 } 的表示函数而定义的。

在“第6章一般递归函数”中,Kleene 以如下方式定义了在变量 y 上的无界μ算子,

“(Ey)μyR(y) = { 最小的(自然数)y 使得 R(y) }” (p. 279),这里的 “(Ey)” 意味着“存在一个 y 使得 ...”

在这个实例 R 自身内,或它的表示函数,在它被满足的时候得出 0(就是得出);这个函数接着得出数 y。在 y 上不存在上界,所以在它的定义中不出现不等式。

对于一个给定 R(y) 无界μ算子 μyR(y)(注意不要求“(Ey)”)可以导致全函数偏函数。Kleene 以不同的方式写这个潜在的偏函数(cf. p. 317):

εyR(x, y) =
  • 最小的 y 使得 R(x,y) [为真],如果 (Ey)R(x,y)
  • 0 否则的话。

性质

(i) 在原始递归函数的上下文中,这里的 μ算子的查找变量 y 是有界的,也就是在下面公式中的 y<z,如果谓词 R 是原始递归的(Kleene Proof #E p. 228),则

μyy<z R( y, x1,..., xn ) 是原始递归函数。

(ii) 在(全)递归函数的上下文中:这里的查找变量是无界的,但是保证对全递归谓词 R 的参数的所有值 xi 都存在,

(x1), ..., (xn) (Ey) R( y, xi, ... xn ) 蕴涵了 μyR(y, xi, ... xn) 是全递归函数
这里的 (xi) 意味着“对于所有 xi”而 Ey 意味着“存在着至少一个 y 的值使得”(cf Kleene (1952) p. 279.)。

则五个原始递归算子加上无界但完全μ算子给出了 Kleene 所称的“一般”递归函数(就是由六个递归函数定义的全函数)。

(iii) 在偏递归函数的上下文中:假设关系 R 成立,当且仅当一个偏序递归函数收敛于零。并假设这个偏递归函数收敛(到某个东西不一定为零)只要 有定义而且 y 或更小。则函数 也是偏递归函数。

μ算子用在可计算函数作为μ递归函数的特征化中。

例子

例子 #1:有界μ算子是原始递归函数

在下文中,为了节省空间使用粗体字 x 来表示字符串 xi, . . ., xn

有界μ算子可以非常简单的用两个原始递归函数(简写为"prf")来表达,它们是项的积 Π 与项的和 Σ,还被用来定义 CASE 函数 (cf Kleene #B page 224)。(按照需要,变量的任何界限比如 s≤t 或 t<z 或 5<x<17 等都是适当的)。例如:

  • Πs≤t fs (x, s) = f0(x, 0) * f1(x, 1) * . . . * ft(x, t)
  • Σt<z gt ( x, t ) = g0( x, 0 ) + g1(x, 1 ) + . . . + gz-1(x, z-1 )

我们先要介入叫做谓词 R 的表示函数的一个函数ψ。函数 ψ 定义为从输入(t= "真", f="假")到输出 ( 0, 1 ) 的映射(注意次序!)。在这种情况下给 ψ 的输入 { t, f } 来自 R 的输出:

  • ψ( R = t ) = 0
  • ψ( R = f ) = 1

Kleene 展示了μyy<z R(y)的如下定义;我们看到积函数 Π 充当了布尔 AND 算子,而和函数 Σ 充当布尔 OR 算子,不同的是它生成 { Σ≠0, Σ=0 } 而不是 { 1, 0 }:

μy y<z R(y) = Σt<z Πs≤t ψ( R( x ,t ,s )) =
  • [ ψ( x, 0, 0 ) ] +
  • [ ψ( x, 1, 0 ) * ψ( x, 1, 1 ) ] +
  • [ ψ( x, 2, 0 ) * ψ( x, 2, 1 ) * ψ( x, 2, 2 ) ] +
  • . . . . . . +
  • [ ψ( x, z-1, 0 ) * ψ( x, z-1, 1 ) * ψ( x, z-1, 2 ) + . . . + ψ ( x, z-1, z-1 ) ]
和 Σ 实际上是带有基础步骤 Σ(x, 0) = 0 和归纳步骤 Σ(x, y+1 ) = Σ( x, y ) + Π( x, y ) 的原始递归。积 Π 是带有基础步骤 Π( x, 0 ) = ψ( x, 0 ) 和归纳步骤 Π( x, y+1 ) = Π( x, y )*ψ( x, y+1 ) 的原始递归。

通过 Kleene 给出例子很容易理解这个等式。他只为指示函数 ψ(R(y))构建了表格。他用表示函数 χ(y) 简写 ψ( x, y ):

y 0 1 2 3 4 5 6 7=z
χ(y) 1 1 1 0 1 0 0
π(y) = Πs≤y χ(s) 1 1 1 0 0 0 0 0
σ(y) = Σt<y π(t) 0 1 2 3 3 3 3 3
最小的 y<z 使得 R(y) 为"真": φ(y) = μy y<z R(y) 3

例子 #2:无界μ算子不是原始递归函数

无界μ算子 -- 函数 μy -- 经常定义于教科书中。但是读者可能奇怪于为什么无界μ算子查找生成零而不是某个其他自然数的函数 R(x, y) -- 现代教科书没有给出原因。

在脚注中 Minsky 的确允许他的算子在内部过程生成一个对参数 "k" 的匹配的时候终止;这个例子也是有用的因为它展示了另一个作者的格式:
" For μt[ φ(t) = k ] "(p. 210)

使用零的原因是无界算子μy将依据其索引 y 允许随着μ算子的查找而增长的函数"积" Π 来定义。如上述例子提及的,一串数ψ(x, 0) *, . . ., * ψ(x, y)的积 Π x<y 生成零,只要它的成员 ψ(x, i) 之一为零:

Πs<y = ψ(x, 0) * , . . ., * ψ(x, y) = 0

如果任何 ψ(x, i)=0 这里的 0 ≤ i ≤ s。所以 Π 充当了布尔 AND。

函数μy生成作为"输出"的一个单一的自然数 y = { 0, 1, 2, 3 ... }。但是,在算子内可能出现一对“情况”之一:(a) "数论函数" χ 生成一个自然数,或(b) "谓词" 生成 { t= true, f = false }。(在偏递归函数的上下文中 Kleene 后来允许第三种结果:"μ = 不可判定", pp. 332ff)。

Kleene 分解他的无界μ算子定义来处理这两种情况 (a) 和 (b)。对于情况 (b),在谓词 R(x, y) 可以参于积 Π 的算术运算之前,它的输出 { t, f } 必须首先被它的“表示函数”χ运算生成 { 0, 1 }。而对于情况 (a),如果要使用一个定义,则“数论函数” χ 必须生成零来满足μ算子。通过这个问题的确立,他展示了一个单一的"Proof III",任何类型 (a) 或 (b) 与五个原始递归函数一起产生(全)递归函数 ... 带有对全函数的限制:

对于所有参数 x,必须提供一个证明证实存在一个 y 满足 (a) μy ψ(x, y) 或 (b) μy R(x,y)。
Kleene 还有第三个情况 (c) 不要求证明对于所有 x 存在一个 y 使得 ψ(x, y)。他在他的全递归函数要比可枚举的函数要多的证明中用到了它。

Kleene 的证明是非形式的并使用了类似第一例子的例子。他首先把μ算子强制为运算于生成自然数 n 的χ函数上的“项的积”的不同形式, 这里的 n 可以是任何自然数,而 0 在 u 算子的测试被满足的时候出现。

使用 Π 函数的重新定义:
μy y<zχ(y) =
  • (i): π(x, y) = Πs<y χ( x, s)
  • (ii): φ(x) = τ( π(x, y), π( x, y' ), y)
  • (iii): τ(z', 0, y) = y ;τ( u, v, w ) 是对 u = 0 或 v > 0 未定义的。

这是微妙的。在第一眼看来这些等式好像使用了原始递归。但是 Kleene 仍未提供通用形式的基本步骤或归纳步骤:

  • 基本步骤:φ( 0,x ) = φ( x )
  • 归纳步骤:φ( 0,x ) = ψ( y, φ(0,x), x)接下来如何?首先,我们提醒自己我们已经指派一个参数(自然数)到所有变量 xi。其次,我们确实看到一个后继算子在做迭代 y(就是 y')的工作。第三,我们看到函数 μy y<zχ(y, x) 正好生成 χ(y,x) i.e. χ(0,x), χ(1,x), ... 的实例,直到一个实例生成 0。第四,在一个实例 χ(n,x) 生成 0 的时候,它导致τ的中间项,就是 v = π( x, y' ) 生成 0。最后,当中间项 v = 0 的时候,μy y<zχ(y) 执行行 (iii) 并“退出”。Kleene 的等式 (ii) 和 (iii) 的表述已经作出了交易使行 (iii) 表示退出 -- 退出只在查找成功的找到一个 y 满足 χ(y) 并且中间项 π(x, y' ) 为零的时候发生;算子接着终止查找于 τ(z', 0, y) = y。
τ( π(x, y), π( x, y' ), y), i.e.:
  • τ( π(x, 0), π( x, 1 ), 0),
  • τ( π(x, 1), π( x, 2 ), 1)
  • τ( π(x, 2), π( x, 3 ), 2)
  • τ( π(x, 3), π( x, 4 ), 3)
  • . . . .。直到出现一个匹配于 y=n 并接着:
  • τ(z', 0, y) = τ(z', 0, n) = n 并且μ算子的查找结束。

对于 Kleene 的例子,"...考虑 xi, ... xn 的任何固定值并简写 "χ(xi, ... xn,y)" 为 "χ(y)":

y 0 1 2 3 4 5 6 7 etc
χ(y) 3 1 2 0 9 0 1 5 . . .
π(y) = Π s≤y χ(s) 1 3 3 6 0 0 0 0 . . .
最小的 y<z 使得 R(y) 为"真": φ(y) = μy y<z R(y) 3

例子 #3:无界μ算子的抽象机定义

Minsky (1967) p. 21 和 Boolos-Burgess-Jeffrey (2002) p. 60-61 都提供了μ算子的抽象机定义。

下列示范跟从 Minsky 但不带有其怪癖。这个示范将使用密切关于皮亚诺公理原始递归函数的"后继"计数器机模型。模型由(i)带有指令的表格和我们重命名为“指令寄存器”(IR)的所谓“状态寄存器”的有限状态自动机,(ii)每个都可以只包含一个单一自然数的一些寄存器,和(iii)在下列表格中描述的四个“命令”的指令集:

在下面,符号 " [ r ] " 意味着" r 的内容",而 " →r " 指示关于寄存器 r 的一个动作。
指令 助记符 对寄存器 "r" 的动作 对指令寄存器 IR 的动作
清除寄存器 CLR ( r ) 0 → r [ IR ] +1 → IR
增加寄存器 INC ( r ) [ r ] +1 → r [ IR ] +1 → IR
等于时跳转 JE (r1, r2, z) IF [ r1 ] = [ r2 ] THEN z → IR
ELSE [ IR ] +1 → IR
停机 H [ IR ] → IR

给极小化算子μy [φ( x, y )] 的算法在本质上建立函数φ( x, y ) 的一个实例序列,随着参数 y 的值(自然数)增加;这个处理将继续(见下面的注释 †)直到在函数φ( x, y ) 的输出和某个预先确立的数(通常为 0)之间的匹配出现。所以 φ(x, y) 的求值需要在最开始时指派一个自然数到 x 的每个变量,指派一个“匹配数”(通常为 0)到一个寄存器 "w",一个数(通常为 0)到寄存器 y。

注释 †:无界μ算子将继续这个尝试匹配过程直到匹配发生或永远。所以 "y" 寄存器必须是无界的 -- 它必须能够持有任意大小的数。不像真实计算机模型,抽象机模型允许如此。在有界μ算子的情况下,下界μ算子将开始于 y 的内容被设置为不是零的一个数。上界μ算子将要求一个额外的寄存器"ub"来包含表示这个上界的数加上一个额外比较运算;一个算法可以同时提供下界和上界。

在下面我们假定指令寄存器 (IR) 遇到了在指令号 "n" 的μy“例程”。它的第一个动作将是在专用的 "w" 寄存器确立一个数 -- 函数 φ( x, y ) 在算法可以终止之前必须生成的数的“例子”(典型的是数零,但也可以使用不是零的数)。算法的在 "n+1" 指令的下一个动作将是清除 "y" 寄存器 -- "y" 将充当开始于 0 的“上升寄存器”。接着在 "n+2" 指令算法求值它的函数 φ( x, y ) -- 我们假定将取用 j 指令来完成 -- 在它的求值φ( x, y ) 的结束处放置它的输出在寄存器"φ"中。在 n+j+3rd 指令算法比较在 "w" 寄存器中的数(比如 0)与在 "φ" 寄存器内的数 -- 如果它们是相同的,则算法成功并通过“exit”退出;否则它增加 "y" 寄存器的内容并回到“loop”再次用新的 y 值去测试函数 φ( x, y )。

IR 指令 对寄存器的动作 对指令寄存器 IR 的动作
n μy[ φ( x, y ) ]: CLR ( w ) 0 → w [ IR ] +1 → IR
n+1 CLR ( y ) 0 → y [ IR ] +1 → IR
n+2 loop: φ ( x, y ) φ([x],[y])→ φ [ IR ] +j+1 → IR
n+j+3 JE (φ, w, exit) CASE: { IF [φ]=[w] THEN exit → IR
ELSE [IR] +1 → IR }
n+j+4 INC ( y ) [ y ] +1 → y [ IR ] +1 → IR
n+j+5 JE (0, 0, loop) 无条件跳转 CASE: { IF [r0] =[r0] THEN loop → IR
ELSE loop → IR }
n+j+6 exit: etc.

參見

  • 图灵度
  • 多一归约
  • 枚举归约
  • 超算术理论
  • 算术层次
  • 分析层次
  • 能行描述集合论
  • 图灵机

參考文獻

  • Stephen Kleene (1952) Introduction to Metamathematics, North-Holland Publishing Company, New York, 11th reprint 1971: (2nd edition notes added on 6th reprint).
  • Marvin L. Minsky (1967), Computation: Finite and Infinite Machines, Prentice-Hall, Inc. Englewood Cliffs, N.J.
On pages 210-215 Minsky shows how to create the μ-operator using the register machine model, thus demonstrating its equivalence to the general recursive functions.
  • George BoolosJohn BurgessRichard Jeffrey (2002), Computability and Logic: Fourth Edition, Cambridge University Press, Cambridge, UK. Cf pp. 70-71.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.