群擴張

抽象代數中,設 ,若存在群 ,及群的正合序列

(換言之, 是單射、 是滿射,且 ;是故可視 正規子群。)則稱群 群擴張,或稱 的扩张。

短正合序列的同構關係,可以定義群擴張的等價類。若某個群擴張等價於

則稱此擴張為平凡擴張。當 落在 中心時,稱之為中心擴張

分類

一般的群擴張不易分類。若限定 為阿貝爾群,則 的擴張等價類一一對應於 (參見條目 Ext函子)。

另一方面,若在群擴張 中, 為阿貝爾群,可任取一截面 (s 不一定是群同態),群 以共軛方式 上作用。這類擴張的等價類由群上同調 分類,並具有自然的群結構。最常見的例子是中心擴張。

李代數的擴張

利用同樣作法,也可以定義李代數的擴張。此即李代數的正合序列

,稱之為中心擴張。

參考資料

  • V.E. Govorov, , Hazewinkel, Michiel (编), , Springer, 2001, ISBN 978-1-55608-010-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.