五邊形鑲嵌
正五邊形不能鑲嵌平面,因為其內角是108°,不能整除360°。截至2015年 ,已知有15种凸五边形鑲嵌平面。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在上述的15种凸五边形鑲嵌平面情况。[1]
歷史
Reinhardt (1918)發現了「鑲嵌塊遞移」(tile transitive)的5種五邊形鑲嵌,即是說鑲嵌的對稱性可以將任何一塊帶到任何另一塊(用數學語言描述,鑲嵌的自同構群作用在鑲嵌塊上是可遞的。)Kershner (1968)發現了3種新的五邊形鑲嵌,都不是鑲嵌遞移的;他錯誤聲稱已經找出所有的五邊形鑲嵌。1975年Richard E. James III找到第9種。Schattschneider (1978)描述業餘數學家瑪喬里·賴斯在1976至1977年間找到新的4種五邊形鑲嵌。Schattschneider (1985)描述Rolf Stein在1985年找到的第14種五邊形鑲嵌。Bagina (2011)證明邊對邊(edge-to-edge)的凸五邊形鑲嵌只有8種,Sugimoto (2012)獨立證出同一結果。2015年,华盛顿大学數學家Casey Mann、Jennifer McLoud和David Von Derau發現了第15種五邊形鑲嵌,使用了電腦算法搜尋。[2]
五邊形的性質
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
B+C=180° A+D+E=360° |
c=e B+D=180° | a = b, d = c + e A = C = D = 120° | b = c, d = e B = D = 90° | a = b, d = e A = 60°, D = 120° | |
6 | 7 | 8 | 9 | 10 | |
a = d = e, b = c B + D = 180°, 2B = E | b = c = d = e B + 2E = 2C + D = 360° | b = c = d = e 2B + C = D + 2E = 360° |
b = c = d = e 2A + C = D + 2E = 360° |
a = b = c + e A = 90°, B + E = 180°, B + 2C = 360° | |
11 | 12 | 13 | 14 | 15 | |
2a + c = d = e A = 90°, 2B + C = 360° C + E = 180° | 2a = d = c + e A = 90°, 2B + C = 360° C + E = 180° | d = 2a = 2e B = E = 90°, 2A + D = 360° |
2a = 2c = d = e A = 90°, B ≈ 145.34°, C ≈ 69.32°, D ≈ 124.66°, E ≈ 110.68° (2B + C = 360°, C + E = 180°). | a = c = e, b = 2a A = 150°, B = 60°, C = 135°, D = 105°, E = 90° |
参考文献
引用
- (PDF). [2017-07-19]. (原始内容存档 (PDF)于2020-11-12).
- Bellos, Alex. . The Guardian. 11 August 2015 [2015-08-18]. (原始内容存档于2015-08-18).
- Peralta, Eyder. . NPR. 14 August 2015 [15 August 2015]. (原始内容存档于2016-08-01).
来源
- Bagina, Olga, , Journal of Combinatorial Theory. Series A, 2004, 105 (2): 221–232, ISSN 1096-0899, MR 2046081, doi:10.1016/j.jcta.2003.11.002
- Bagina, Olga, [Tilings of the plane with convex pentagons], Vestnik (Kemerovo State University), 2011, 4 (48): 63–73 [29 January 2013], ISSN 2078-1768, (原始内容存档于2015-10-01) (俄语)
- Grünbaum, Branko; Shephard, Geoffrey C., , , New York: W. H. Freeman and Company, 1987, ISBN 0-7167-1193-1, MR 0857454
- Gardner, Martin, , , New York: W. H. Freeman and Company, 1988, ISBN 0-7167-1925-8, MR 0905872
- Godrèche, C., , Journal of Physics A: Mathematical and General, 1989, 22 (24): L1163–L1166, MR 1030678, doi:10.1088/0305-4470/22/24/006
- Hirschhorn, M. D.; Hunt, D. C., , Journal of Combinatorial Theory. Series A, 1985, 39 (1): 1–18, ISSN 1096-0899, MR 0787713, doi:10.1016/0097-3165(85)90078-0
- Kershner, Richard, , American Mathematical Monthly, 1968, 75: 839–844 [2015-08-18], ISSN 0002-9890, MR 0236822, doi:10.2307/2314332, (原始内容存档于2016-03-05)
- Reinhardt, Karl, , Dissertation Frankfurt a.M., Borna-Leipzig, Druck von Robert Noske, 1918 (德语)
- Schattschneider, Doris, , Mathematics Magazine, 1978, 51 (1): 29–44 [2015-08-18], ISSN 0025-570X, MR 0493766, doi:10.2307/2689644, (原始内容存档于2015-08-18)
- Schattschneider, Doris, , Mathematics Magazine, 1985, 58 (5): 308, The cover has a picture of the new tiling
- Sugimoto, Teruhisa, (PDF), Forma, 2012, 27 (1): 93–103 [2015-08-18], MR 3030316, (原始内容存档 (PDF)于2015-09-24)
参见
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.