充分统计量
費雪分解定理
若一个统计模型具有似然函数fθ(x),则T是θ的充分统计量当且仅当存在非负函数g与h,使得
最小充分统计量
若一个充分统计量是任何其他充分统计量的函数,则称其是一个最小充分统计量。即,统计量S(X)是最小充分统计量当且仅当[2]
- S(X)是充分统计量,
- 如果T(X)是一个充分统计量,那么存在一个函数f 使得 S(X)= f(T(X))。
一个有用的结论指出,当概率密度fθ存在时,S(X)是最小充分统计量当且仅当
- 与θ无关 S(x)= S(y).
这一结论很容易由前述费希尔分解定理得出。
巴哈杜尔于1954年发现了一个最小充分统计量不存在的例子。[3] 然而,在一般的条件下,最小充分统计量总是存在的。
註釋
- Fisher, R.A. . Philosophical Transactions of the Royal Society A. 1922, 222: 309–368 [2017-12-25]. JFM 48.1280.02. JSTOR 91208. doi:10.1098/rsta.1922.0009. (原始内容存档于2017-07-29).
- Dodge (2003) — entry for minimal sufficient statistics
- Lehmann and Casella (1998), Theory of Point Estimation, 2nd Edition, Springer, p 37
- Lehmann and Casella (1998), Theory of Point Estimation, 2nd Edition, Springer, page 42
参考文献
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.