反證法
反证法[1](英語:)又称背理法,是一种论证方式,他首先假设某命题成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。
反证法与归谬法相似,但归谬法不仅包括推理出矛盾结果,也包括推理出不符事实的结果或显然荒谬不可信的结果。
理據
給出命題 和命題 (非 ),根據排中律,兩者之中起碼有一個是真(更強的說法為,除了真和假之外並無其他的情況),所以如果其中一個是假的,另一個就必然是真。給出命題 和命題 (非 ),根據無矛盾律,兩者同時為真的情況為假。給出命題 和 ,根據否定後件律,如果若 成立時出現 ,則 為假時 即為假。反證法在要證明 時,透過顯示出若 成立時出現矛盾( 和 ),即 為假,從而證明 為真。
例子
其他可用反證法證明的例子
數學上有許多的定理可用反證法來證明,以下是一小部分的例子:
引文
- 英國數學家高德菲·哈羅德·哈代在他的文章《一個數學家的辯白》描述:「歐幾里得最喜歡用的反證法,是數學家最精良的武器。它比起棋手所用的任何戰術還要好:棋手可能需要犧牲一隻兵甚至更多,但數學家卻是犧牲整個棋局來獲得勝利。」
進一步閱讀
- J. Franklin and A. Daoud, Proof in Mathematics: An Introduction, Quakers Hill Press, 1996, ch. 6
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.