增透膜

增透膜(英语:Anti-reflective coating,AR)是一种表面光学镀层,它通过减少的反射以增加透过率。在复杂的光学系统中,它可以通过减少系统中的散射光来提高对比度,例如望远镜,这对天文学十分重要。其他方面,增透膜能减少暗处双筒望远镜的闪光。

沒有鍍膜的眼鏡鏡片(上方)比鍍上增透模的眼鏡鏡片反射更多光波。特別注意到鍍膜的眼鏡鏡片的反射帶有些許顏色。

很多涂层都包括了折射率不同的透明薄膜结构。薄膜的厚度决定其作用的反射光波长。当光线在增透膜上产生二次反射时,会和原反射光发生干涉,从而减弱反射光。而根据能量守恒,光的能量不变。因此当反射光减少时,透射光便增多。这就是增透膜的原理。一般,选择增透膜时需确定波长,如红外线,可见光以及紫外线。

制造工艺

涂层材料

氟化钙 氟化镁 氧化钛 硫化铅 硒化铅

乙烯基倍半硅氧烷杂化膜 金刚石薄膜

技术

真空镀膜 化学气相沉积 溶胶—凝胶法

应用


(视力)校正镜片

配镜师會在眼鏡上鍍上增透膜,以減少反射,讓配戴者配戴後可以看的較清楚,其產生的炫光也會比較少,這對於夜间開車及在電腦螢幕前工作的人而言格外重要。炫光較少讓配戴者比較不會疲倦。增透膜讓讓較多的光可以通過眼鏡,增加視覺對比也提昇視力。

防反射的镜片和偏振片不同,偏振片會吸收太陽反射到物體表面(例如沙、水面及路面)的光。「防反射」一詞是指避免鏡片本身造成的光反射,不是避免由其他物體表面反射的太陽光。

許多增透膜還會有其他排斥脂肪的塗層,目的是為了方便清洗。防反射塗層特別適合用在高折射率的鏡片。高折射率玻璃的增透膜比較便宜,也比較簡單。

光刻

在微电子技术的光刻工艺中, 增透膜可以减少光斑的畸变。不同的增透膜适用不同的 光致抗蚀剂, 另外,也可以减少驻波,薄膜干涉以及镜面反射[1][2]

类型

折射率匹配

最簡單的抗反射塗層形式是由瑞利男爵於 1886 年發現的。由於與環境發生化學反應,當時光學玻璃表面會隨著時間而生成髒污 页面存档备份,存于。 Rayleigh 測試了一些舊的、稍微髒污的玻璃片,驚訝地發現它們比新的、乾淨的玻璃片穿透更多的光。取代了空氣-玻璃界面,髒污層形成了空氣-髒污層界面與髒污層-玻璃界面。由於髒污層的折射率介於玻璃和空氣之間,因此這兩個界面中的反射量每一個都比空氣-玻璃界面更少。事實上,這兩個反射的總和小於僅是由空氣-玻璃組成的界面反射,這可以從菲涅耳方程計算出來。

一種方法是使用漸變折射率 (graded-index, GRIN) 抗反射塗層,即折射率幾乎連續變化的塗層。有了這些,就可以在寬頻譜和不同入射角範圍內減少反射。

蛾眼

飛蛾的眼睛有一個異常的特性:它們的表面覆蓋著一層天然奈米結構薄膜 页面存档备份,存于,以消除反射。這使飛蛾不但能黑暗中能看得很清楚,並且也不會因為反射而暴露自己的位置給掠食者。該結構由六邊形凸點圖案組成,每個凸點約高 200 奈米,中心間隔為 300 奈米。這種抗反射塗層之所以有效,是因為凸點小於可見光波長,使得空氣-眼睛組織介質對可見光而言具有連續的折射率梯度 页面存档备份,存于,進而有效地去除了空氣-透鏡界面反射。人類利用了此效應製造抗反射膜;這是一種仿生學 页面存档备份,存于的應用。例如,佳能公司利用蛾眼技術在其次波長結構塗層中顯著減少鏡頭光暈 页面存档备份,存于

這種結構也用於光學元件,例如,由氧化鎢和氧化鐵組成的蛾眼結構可用作光電極,用於分解水以產生氫氣。該結構由數百微米大小的氧化鎢球體組成,上面鍍著數納米的氧化鐵層。

理论

干扰层

可以认为使用中间层形成抗反射涂层类似于电信号的阻抗匹配技术。 (在光纤研究中使用了类似的方法,有时使用与折射率匹配的油来暂时消除全内反射,以便光可以耦合进或耦合出光纤。)理论上可以通过扩展来进一步减少反射该过程对几层材料,逐渐将每一层的折射率混合在空气的折射率和基材的折射率之间。

然而,实用的抗反射涂层依赖于中间层,不仅因为它直接降低反射系数,而且还利用了薄层的干扰效应。假设精确控制层的厚度,使其恰好是层中光波长的四分之一(λ/4 = λ0/(4n1),其中 λ0 是真空波长)。然后将该层称为四分之一波涂层。对于这种类型的涂层,当从第二个界面反射时,垂直入射光束 I 将比从第一个表面反射的光束传播其自身波长的一半,从而导致相消干涉。对于较厚的涂层(3λ/4、5λ/4 等)也是如此,但是在这种情况下,由于反射率对波长和入射角的依赖性更强,因此抗反射性能更差。

如果两个光束 R1 和 R2 的强度完全相等,它们将相消干涉并相互抵消,因为它们完全不同相。因此,没有来自表面的反射,并且光束的所有能量都必须在透射光线 T 中。在计算堆叠层的反射时,可以使用传递矩阵方法。

原理

许多涂层由透明的薄膜结构组成,具有交替的折射率不同的交替层。 选择层厚度以在从界面反射的光束中产生相消干涉(destructive interference),并在相应的透射光束中产生相长干涉(constructive interference)。

参考

  1. Understanding bottom antireflective coatings 页面存档备份,存于
  2. Yet, Siew Ing. 5375. SPIE: 940–948. 2004 [2012-06-25]. doi:10.1117/12.535034. (原始内容存档于2017-06-02).

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.