大Q勒让德多项式
正交性
大q-勒让德多项式满足下列正交关系
极限关系
- 大Q勒让德多项式→勒让德多项式
令大q勒让德项式中的,并且q→1 即得勒让德多项式
- 验证
将c=0代人7阶(n=7)大q勒让德多项式得:
另7阶勒让德多项式:
显然qL2=P_7(2x-1) QED.
图集
下列复数域三阶大q勒让德多项式:的
一组三个虚数部、实数部与绝对值的复数三维动画图,以q为可变参数
一组三个虚数部、实数部与绝对值的复数密度动画图
参考文献
- Andrews, George E.; Askey, Richard, , Brezinski, C.; Draux, A.; Magnus, Alphonse P.; Maroni, Pascal; Ronveaux, A. (编), , Lecture Notes in Math. 1171, Berlin, New York: Springer-Verlag: 36–62, 1985, ISBN 978-3-540-16059-5, MR 0838970, doi:10.1007/BFb0076530
- Gasper, George; Rahman, Mizan, , Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press, 2004, ISBN 978-0-521-83357-8, MR 2128719, doi:10.2277/0521833574
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, 2010, ISBN 978-3-642-05013-8, MR 2656096, doi:10.1007/978-3-642-05014-5
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., http://dlmf.nist.gov/18
|contribution-url=
缺少标题 (帮助), Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), , Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248
- Roelof p443
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.