Talbot曲线

Talbot曲线也稱為切恩豪斯立方曲線,為一平面曲線極坐標方程式如下

Tschirnhausen立方曲線

歷史

埃伦弗里德·瓦尔特·冯·切恩豪斯紀堯姆·德·洛必達歐仁·查爾斯·加泰羅尼亞都曾研究此曲線。在R C Archibald於1900年發表的論文中將此稱為切恩豪斯立方曲線,不過也稱為洛必達立方曲線(de L'Hôpital's cubic)或加泰羅尼亞三等分角线(trisectrix of Catalan)。

其他方程式

,再應用棣莫弗公式可得

可以得到此曲線的參數式。參數t可以消去,得到以下方程式

.

若此參數式水平平移8a,方程式會變成

.

因此可以得到另一個極坐標方程式

.

參考資料

  • J. D. Lawrence, A Catalog of Special Plane Curves. New York: Dover, 1972, pp. 87-90.

外部連結


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.