安斯库姆四重奏

安斯库姆四重奏()是四组基本的统计特性一致的数据,但由它们绘制出的图表则截然不同。每一组数据都包括了11个(x,y)点。这四组数据由统计学家弗朗西斯·安斯库姆(Francis Anscombe)于1973年构造,他的目的是用来说明在分析数据前先绘制图表的重要性,以及离群值对统计的影响之大。

安斯库姆四重奏的四组数据图表

这四组数据的共同统计特性如下:

性质 数值
x平均数 9
x方差 11
y的平均数 7.50(精确到小数点后两位)
y的方差 4.122或4.127(精确到小数点后三位)
xy之间的相关系数 0.816(精确到小数点后三位)
线性回归线 (分别精确到小数点后两位和三位)

在四幅图中,由第一组数据绘制的图表(左上图)是看起来最“正常”的,可以看出两个随机变量之间的相关性。从第二组数据的图表(右上图)则可以明显地看出两个随机变量间的关系是非线性的。第三组中(左下图),虽然存在着线性关系,但由于一个离群值的存在,改变了线性回归线,也使得相关系数从1降至0.81。最后,在第四个例子中(右下图),尽管两个随机变量间没有线性关系,但仅仅由于一个离群值的存在就使得相关系数变得很高。

爱德华·塔夫特(Edward Tufte)在他所著的《图表设计的现代主义革命》(The Visual Display of Quantitative Information)一书的第一页中,就使用安斯库姆四重奏来说明绘制数据图表的重要性。

四组数据的具体取值如下所示。其中前三组数据的x值都相同。

安斯库姆四重奏
x y x y x y x y
10.08.0410.09.1410.07.468.06.58
8.06.958.08.148.06.778.05.76
13.07.5813.08.7413.012.748.07.71
9.08.819.08.779.07.118.08.84
11.08.3311.09.2611.07.818.08.47
14.09.9614.08.1014.08.848.07.04
6.07.246.06.136.06.088.05.25
4.04.264.03.104.05.3919.012.50
12.010.8412.09.1312.08.158.05.56
7.04.827.07.267.06.428.07.91
5.05.685.04.745.05.738.06.89

参见

参考文献

  • F.J. Anscombe, "Graphs in Statistical Analysis," American Statistician, 27 (February 1973), 17-21.
  • Tufte, Edward R. (2001). The Visual Display of Quantitative Information, 2nd Edition, Cheshire, CT: Graphics Press. ISBN 0961392142
  • Sangit Chatterjee and Aykut Firat (2007). "Generating Data with Identical Statistics but Dissimilar Graphics: A Follow up to the Anscombe Dataset", American Statistician, 61(3), 248-254. doi:10.1198/000313007X220057

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.