尤葛—理希定理

尤葛—理希定理(Jurkat–Richert theorem)是篩法上的數學定理,這定理是關於歌德巴赫猜想陳氏定理的關鍵部分。[1]:272這定理在1965年由沃夫岡·B·尤葛(Wolfgang B. Jurkat)及漢斯—哀滾·理希所證明。[2]

定理陳述

以下公式表示取自賈盟(Diamond)與哈巴施潭[3]:81其他的公式表示可見於尤葛與理哲、[2]:230哈巴施潭與理希、[4]:231以及那丹生(Nathanson)等人的結果。[1]:257

假定是一個整數的有限序列,而是質數集合,設中可被除盡的元素構成的集合,並設中小於的質數的乘積,然後再設為一個使得大致與中可被除盡的元素成比例的積性函數。然後中元素的大致個數,則其餘項可表示如下:

中與彼此互質的元素的個數,則有下式:

再設彼此相異的質因數的數量,並設為滿足特定微分差分方程的方程式。(可參見賈盟與哈巴施潭的書[3]:67–68以知其定義與性質)現在假定篩選密度的維度為一,也就是在存在常數,使得的情況下,可得以下關係式:

(賈盟與哈巴施潭的書[3]將此定理延伸到維度大於一的狀況)那麼尤葛—理希定理就表示說對於任意滿足的數而言,有以下關係式:

註解

  1. Nathanson, Melvyn B. . Graduate Texts in Mathematics 164. Springer-Verlag. 1996 [2009-03-14]. ISBN 978-0-387-94656-6. Zbl 0859.11003.
  2. Jurkat, W. B.; Richert, H.-E. (PDF). Acta Arithmetica. 1965, XI: 217–240 [2009-02-17]. ISSN 0065-1036. Zbl 0128.26902. (原始内容存档 (PDF)于2023-05-08).
  3. Diamond, Harold G.; Halberstam, Heini. . Cambridge Tracts in Mathematics 177. With William F. Galway. Cambridge: Cambridge University Press. 2008. ISBN 978-0-521-89487-6. Zbl 1207.11099.
  4. Halberstam, Heini; Richert, H.-E. . London Mathematical Society Monographs 4. London: Academic Press. 1974. ISBN 0-12-318250-6. MR 0424730. Zbl 0298.10026.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.