归纳偏置

歸納偏置英語:),指的是學習演算法中,當學習器去預測其未遇到過的輸入結果時,所做的一些假設的集合(Mitchell, 1980)。

機器學習試圖去建造一個可以學習的演算法,用來預測某個目標的結果。要達到此目的,要給於學習演算法一些訓練样本,样本說明輸入與輸出之間的預期關係。然后假设學習器在预测中逼近正确的结果,其中包括在訓練中未出現的样本。既然未知状况可以是任意的結果,若沒有其它額外的假設,這任務就無法解決。這種關於目標函數的必要假設就称为歸納偏置(Mitchell, 1980; desJardins and Gordon, 1995)。

一個典型的歸納偏置例子是奧卡姆剃刀,它假設最簡單而又一致的假设是最佳的。這裡的一致是指學習器的假设會對所有樣本產生正確的結果。

歸納偏置比較正式的定義是基於數學上的邏輯。這裡,歸納偏置是一個與訓練样本一起的邏輯式子,其邏輯上會蘊涵學習器所產生的假设。然而在实际应用中,這種嚴謹形式常常無法適用。在有些情况下,学习器的歸納偏置可能只是一個很粗糙的描述(如在人工神經網路中),甚至更加简单。

歸納偏置的種類

以下是機器學習中常見的歸納偏置列表:

  • 最大條件獨立性(conditional independence):如果假說能轉成貝葉斯模型架構,則試著使用最大化條件獨立性。這是用於朴素貝葉斯分類器(Naive Bayes classifier)的偏置。
  • 最小交叉驗證误差:當試圖在假說中做選擇時,挑選那個具有最低交叉驗證误差的假說,雖然交叉驗證看起來可能無關偏置,但天下没有免费的午餐理論顯示交叉驗證已是偏置的。
  • 最大邊界:當要在兩個類別間畫一道分界線時,試圖去最大化邊界的寬度。這是用於支持向量機的偏置。這個假設是不同的類別是由寬界線來區分。
  • 最小描述長度(Minimum description length):當构成一個假设時,試圖去最小化其假设的描述長度。假设越简单,越可能為真的。見奧卡姆剃刀
  • 最少特徵數(Minimum features):除非有充分的證據顯示一個特徵是有效用的,否則它應当被刪除。這是特徵選择(feature selection)算法背後所使用的假設。
  • 最近鄰居:假設在特徵空間(feature space)中一小區域內大部分的样本是同屬一類。給一個未知類別的样本,猜測它與它最緊接的大部分鄰居是同屬一類。這是用於最近鄰居法的偏置。這個假設是相近的样本應傾向同屬於一類別。

偏置变换

雖然大部分的學習演算法使用固定的偏置,但有些算法在获得更多数据時可以變換它們的偏置。這不會取消偏置,因為偏置变换的過程本身就是一種偏置。

另見

參考文獻

desJardins, M., and Gordon, D.F. (1995). Evaluation and selection of biases in machine learning 页面存档备份,存于. Machine Learning Journal, 5:1--17, 1995.

Mitchell, T.M. (1980). The need for biases in learning generalizations 页面存档备份,存于. CBM-TR 5-110, Rutgers University, New Brunswick, NJ.

Utgoff, P.E. (1984). Shift of bias for inductive concept learning. Doctoral dissertation, Department of Computer Science, Rutgers University, New Brunswick, NJ.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.