形变收缩
定义
收缩
设 X 是一个拓扑空间,A 是 X 的一个子空间。那么连续映射
是一个收缩如果 r 在 A 上的限制是 A 上的恒等映射;这就是说,r(a) = a 对所有 a 属于 A。等价地,记
为包含,一个收缩是一个连续映射 r 使得
即 r 与 包含的复合是 A 的恒等。注意,由定义,一个收缩映射 X 映满 A。如果存在收缩映射,则子空间 A 称为 X 的一个收缩核()。例如,任何空间以显然的方式收缩到一点(取常数映射为收缩)。
如果 X 嵌入任何正规空间 Y,作为 Y 的闭子集,X 是 Y 的收缩核,则空间 X 称为绝对收缩核(或 AR)。
邻域收缩
如果存在一個開集 U 使得
且 A 是 U 的一個收縮核,則 A 稱為 X 的一個鄰域收縮核。
如果空間 X 閉嵌入任何正規空間 Y中,X 是 Y 的一個鄰域收縮核,稱為 X 為一個絕對鄰域收縮核(或 ANR)。
形变收缩与强形变收缩
称连续映射
是一个形变收缩,如果对任何x 属于 X 及 a 属于 A 有
- ,以及
换句话说,形变收缩是收缩与 X 上恒等映射的同伦。子空间 A 称为 X 的形变收缩核。形变收缩核是一类特殊的同伦等价。
收缩不一定是形变收缩。例如,以一个单点作为形变收缩核意味着是道路连通的(事实上这个空间是可缩的)。
注:形变收缩的另一个等价的定义如下。连续映射 r: X → A 是一个形变收缩如果它是一个收缩且它与包含映射的复合同伦于 X 上的恒等映射。在这种表述下,一个形变收缩得出它与 X 上的恒等映射之间的一个同伦。
如果在形变收缩的定义中,我们添加条件:
对多有 t 属于 [0, 1],d 称为一个强形变收缩()。换句话说,强形变收缩在同伦中保持 A 中的点不动(也有一些作者将其作为形变收缩的定义)。
邻域形变收缩
U 中的空间偶 称为 NDR-偶如果存在映射 使得 与同伦 ,使得 对所有 , 对所有 ,以及 对所有 。二元组 称为 作为 NDR-偶的一个表示。
引用
- 本條目含有来自PlanetMath《Neighborhood retract》的內容,版权遵守知识共享协议:署名-相同方式共享协议。