截角超立方體

截角超立方体有24个:8个截角立方体,和16个正四面体

截角超立方体
施莱格尔投影
(可以看见正四面体胞)
類型均匀多胞体
識別
名稱截角超立方体
參考索引12 13 14
數學表示法
考克斯特符號
node_1 4 node_1 3 node 3 node 
施萊夫利符號t0,1{4,3,3}
性質
24
8 3.8.8
16 3.3.3
88
64 {3}
24 {8}
128
頂點64
組成與佈局
顶点图
Isosceles triangular pyramid
對稱性
考克斯特群BC4, [4,3,3], order 384
特性
convex

坐标

截角超立方体可以通过在每条棱距离顶点处截断超立方体的每一个角来得到。每个截断的角会产生一个正四面体

一个棱长为2的截角超立方体的每个顶点的笛卡儿坐标系坐标为:

投影

正交投影
考克斯特平面 B4 B3 / D4 / A2 B2 / D3
Graph
二面体群 [8] [6] [4]
考克斯特平面 F4 A3
Graph
二面体群 [12/3] [4]

展开图

三维正交投影

参考文献

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 页面存档备份,存于
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Models 13, 16, 17, George Olshevsky.
  • Klitzing, Richard. . bendwavy.org. o3o3o4o - tat, o3x3x4o - tah, x3x3o4o - thex

    外部链接

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.