摩尔-彭若斯广义逆

摩尔-彭若斯广义逆英語:),通常標記為,是著名的广义逆矩阵之一。

1903年,埃里克伊姆(Erik Ivar Fredholm)提出积分算子的伪逆的概念。摩尔-彭若斯广义逆先后被以利亚金·黑斯廷斯·摩尔(Eliakim Hastings Moore)(1920年)[1]阿恩·布耶哈马(Arne Bjerhammar)(1951年) [2]罗杰·彭罗斯(1955年)[3]发现或描述。

它常被用于求得或简化非一致线性方程组的最小范数最小二乘解(最小二乘法)。

矩阵的摩尔-彭若斯广义逆在实数域和复数域上都是唯一的,并且可以通过奇异值分解求得。

定义

定义一

PS表示到向量空间S上的正交投影。对于任意一个m乘n的复矩阵A,设R(A)表示A的值域空间。摩尔于1935年证明矩阵A的广义逆矩阵G必须满足的条件:

以上两个条件称为摩尔条件。满足摩尔条件的矩阵G称为矩阵A的摩尔逆矩阵。


定义二

彭若斯于1955年提出了定义广义逆矩阵的另外一组条件[3]

  1. 不一定是单位矩阵,但却不会改变的列向量。
  2. 是乘法半群弱逆
  3. 埃尔米特矩阵
  4. 也是埃尔米特矩阵

以上四个条件常称摩尔-彭若斯条件。满足全部四个条件的矩阵G,就称为A的摩尔-彭若斯广义逆矩阵。

性质

从摩尔-彭若斯条件出发,彭若斯推导出了摩尔-彭若斯广义逆的一些性质[3]

  • 都是幂等矩阵。

存在性和唯一性

伪逆存在且唯一:对于任何矩阵,恰好有一个矩阵满足定义的四个性质。[4]

满足该定义的第一个条件的矩阵被称为广义逆。如果该矩阵也满足第二个定义,它就被称为广义反身逆阵(generalized reflexive inverse)。广义逆矩阵总存在,但一般不唯一。唯一性是最后两个条件的结果。

基本性质

維基教科書中的相關電子:Topics in Abstract Algebra/Linear algebra

这些性质的证明可以在維基教科書中找到。

  • 如果 有实数项,那么 也有。
  • 如果 是可逆的,它的伪逆就是它的逆矩阵,即: .[5]:243
  • 零矩阵的伪逆是它的转置。
  • 矩阵伪逆的伪逆是原矩阵,即: .[5]:245
  • 伪转置与转置、复共轭和共轭转置可以交换:[5]:245
    , , .
  • 矩阵 的标量乘法的伪逆是 的标量的倒数的乘法:
    对于 .

恒等式

下面的恒等式可以用来判定部分涉及伪逆的子表达式的正确性:

同样的,将 替换为 会得到:

当用 替代 时,会得到:

埃尔米特情况

伪逆的计算可以简化为其在埃尔米特情况下的构造,这可以通过等价关系实现:

其中 是埃尔米特矩阵。

乘积

,下列等式等价:[6]

下方列出了 的充分条件:

  1. 的列单位正交(此时),或
  2. 的行单位正交 (此时 ) ,或
  3. 的列线性无关(此时 ) 同时 的行线性无关(此时 ),或
  4. ,或

下方列出了 的必要条件:

由最后一个充分条件得出等式:

注意: 等式 一般不成立,例如:

投影

是正交投影算子,即它们是埃尔米特矩阵()和幂等矩阵()。以下性质成立:

  • 是正交投影算子,投影到 的值域(也就是 的正交补空间)。
  • 是正交投影算子,投影到 的值域(也就是 的核的正交补空间)。
  • 是正交投影算子,投影到 的核。
  • 是正交投影算子,投影到 的核。[4]

最后两条性质隐含了下列等式:

如果 是埃尔米特矩阵和幂等矩阵(当且仅当它为正交投影矩阵),则对于任意矩阵 ,下式成立:[7]

这一条性质可以如此证明:定义矩阵 , ,当 是埃尔米特矩阵和幂等矩阵时,通过验证伪逆的性质可以检查 确实是 的一个伪逆。从上一条性质可以看出,当 是埃尔米特矩阵和幂等矩阵时,对于任意矩阵

是一个正交投影矩阵,则它的伪逆就是它自身,即


几何结构

如果我们把矩阵看作是一个在数域 上的线性映射 , 那么 可以被分解如下。首先定义符号: 表示直和, 表示正交补, 表示映射的核, 表示映射的像。注意 。 限制条件 则是一个同构。这意味着 上时这个同构的逆,在 上则是零。

换而言之,对于给定的 要找到 ,首先将 正交投影在 的值域中,找到点 ,然后构建 ,即就是在 中,会被 投影到 的点。这是 的一个平行于 的核的仿射子空间。这个子空间中长度最小的元素(也就是最靠近原点的元素),就是我们寻找的 的解。它可以通过从 中选择任意元素,并将其投影在 的核的正交补空间而得到。

以上描述与线性系统的最小范数解密切相关。


子空间

极限

伪逆可以由极限定义:

(参见吉洪诺夫正则化)。当 不存在时,这些极限仍然存在。[4]:263

连续性

与一般的矩阵求逆不同,求伪逆的过程并不连续:如果序列 收敛到矩阵 (在最大范数或弗罗贝尼乌斯范数意义下),则 不一定收敛于 . 然而,如果所有的矩阵 有相同的秩,则 将收敛于 .[8]

导数关系

实值伪逆矩阵的导数,该矩阵在某点处具有恒定的秩 可以用原矩阵的导数来计算:[9]

例子

对于可逆矩阵,其广义逆为其一般的逆矩阵,所以以下仅举一些不可逆矩阵的例子。

  • 对于,其广义逆矩阵为(通常零矩阵的广义逆矩阵为其转置)。该广义逆矩阵的唯一性可以认为时由性质得出的,因为与零矩阵相乘总会得到零矩阵。
  • 对于,其广义逆矩阵为
    • 事实上,,所以
    • 类似的, ,由此
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为
  • 对于,其广义逆矩阵为 。对于该矩阵,其左逆存在且等于,事实上,

参考

书籍

  • 张贤达. . 北京: 清华大学出版社. 2004年9月: 85–99. ISBN 7-302-09271-0 (中文).

文献

  1. Moore, E. H. . Bulletin of the American Mathematical Society. 1920, 26 (9): 394–395 [2012-12-01]. doi:10.1090/S0002-9904-1920-03322-7. (原始内容存档于2020-08-13).
  2. Bjerhammar, Arne. . Trans. Roy. Inst. Tech. Stockholm. 1951, 49.
  3. Penrose, Roger. . Proceedings of the Cambridge Philosophical Society. 1955, 51: 406–413. doi:10.1017/S0305004100030401.
  4. Golub, Gene H.; Charles F. Van Loan. 有限度免费查阅,超限则需付费订阅 3rd. Baltimore: Johns Hopkins. 1996: 257–258. ISBN 978-0-8018-5414-9.
  5. Stoer, Josef; Bulirsch, Roland. 3rd. Berlin, New York: Springer-Verlag. 2002. ISBN 978-0-387-95452-3..
  6. Greville, T. N. E. . SIAM Review. 1966-10-01, 8 (4): 518–521 [2022-05-10]. ISSN 0036-1445. doi:10.1137/1008107. (原始内容存档于2022-06-17).
  7. Maciejewski, Anthony A.; Klein, Charles A. . International Journal of Robotics Research. 1985, 4 (3): 109–117. S2CID 17660144. doi:10.1177/027836498500400308. hdl:10217/536可免费查阅.
  8. Rakočević, Vladimir. (PDF). Matematički Vesnik. 1997, 49: 163–72 [2022-05-10]. (原始内容 (PDF)存档于2022-04-03).
  9. Golub, G. H.; Pereyra, V. . SIAM Journal on Numerical Analysis. April 1973, 10 (2): 413–32. Bibcode:1973SJNA...10..413G. JSTOR 2156365. doi:10.1137/0710036.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.