梅滕斯定理

解析數論中,梅滕斯定理指的是三個弗朗茨·梅滕斯在1874年證明的定理,這些定理與質數密度相關。[1]

以下假定指的是所有不超過的質數。

梅滕斯第一定理

梅滕斯第一定理指的對於任何的而言,以下式的絕對值不會超過A083343):

梅滕斯第二定理

梅滕斯第二定理如下:

其中Meissel–Mertens常數A077761);更精確地說,梅滕斯[1]證明了對於任意的,以上的公式在極限意義下,其絕對值不會超過下式:

證明

證明梅滕斯第二定理的主要步驟如下:

其中最後的等式要求,而這可由得出。

因此我們證明了下式:

由於在時,質數的次方的倒數和收斂之故,這表示說

故由分部求和法可推得下式:

變號

在一篇於1983年出版的關於除數函數增長率的文章中,[2]Guy Robin證明了以下在梅滕斯第二定理中出現的差會變號無限多次:

此外,以下在梅滕斯第三定理中出現的差也會變號無限多次:

Robin的結果類似於李特爾伍德證明的「這個差會變號無限多次」的這定理。唯對於梅滕斯第二及第三定理而言,目前尚沒有類似於斯奎斯數這樣,最小的導致變號的自然數的上界。

與質數定理間的關係

梅滕斯在他的《兩個令人好奇的勒讓德公式》(two curious formula of Legendre)這篇論文中論及了這個非病態的公式[1],在這篇文章中出現的第一個公式是梅滕斯第二定理的原型;而同篇文章中出現的第二個公式是梅滕斯第三定理的原型,詳情可見該篇文的前面數行。他回憶說這公式出現在勒讓德的《數論》(Théorie des nombres)的第三版(出版於1830年,而實際上該公式出現於1808年出版的第二版中),且更加詳細的版本為切比雪夫在1851年所證明。[3]應當注意的是,歐拉在1737年就已知該公式的非病態行為。

梅滕斯禮貌性地描述說他的證明是更加精準且確實的。實際上在他之前的任何證明,在現代標準下都是不可接受的:歐拉的計算牽涉到無限(以及無限的雙曲對數和無限的對數的對數);勒讓德的論證是啟發性的;而切比雪夫證明,盡管邏輯上完美,但用到了直到1896年之前都尚未得證、並在後來被稱為質數定理的勒讓德─高斯猜想。

梅滕斯的證明並未用到在1874時尚未得證的任何猜想,且只用到基本的實分析,而這證明出現在質數定理得證的22年之前;而與之相對地,質數定理仰賴對做為複數域上的函數的黎曼ζ函數的行為的詳細分析。

由此來看,梅滕斯的證明在這方面是印象深刻的,事實上,以當今慣用的大O符號表記,其論述如下:

而若使用最簡單、不帶誤差項估計的質數定理,可證明下式成立:[4]

在1909年,愛德蒙·蘭道(Edmund Landau)用他當時可得的最好的質數定理的版本,證明了下式成立:[5]

特別地,對任何固定數而言,這誤差項小於

對已知的最強版本使用簡單的分部求和技巧,可將之改進為:

對於一些而言,有

類似地,使用分部求和法可證明說質數定理蘊含了

梅滕斯第三定理

梅滕斯第三定理如下:

其中歐拉-馬斯刻若尼常數。(A001620

篩法的關係

對於「)沒有小於的因子的機率」的估計,可由下式給出:

這與梅滕斯第三定理密切相關,因為梅滕斯第三定理給出了下式的非病態估計:

參考資料

  1. F. Mertens. J. reine angew. Math. 78 (1874), 46–62 Ein Beitrag zur analytischen Zahlentheorie
  2. Robin, G. . Séminaire Delange–Pisot–Poitou, Théorie des nombres (1981–1982). Progress in Mathematics. 1983, 38: 233–244.
  3. P.L. Tchebychev. Sur la fonction qui détermine la totalité des nombres premiers. Mémoires présentés à l'Académie Impériale des Sciences de St-Pétersbourg par divers savants, VI 1851, 141–157
  4. I.3 of: G. Tenenbaum. Introduction to analytic and probabilistic number theory. Translated from the second French edition (1995) by C. B. Thomas. Cambridge Studies in Advanced Mathematics, 46. Cambridge University Press, Cambridge,1995.
  5. Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig 1909, Repr. Chelsea New York 1953, § 55, p. 197-203.

延伸閱讀

  • Akiva Moiseevich YaglomIsaak Moiseevich Yaglom所著的《以初等技巧解決挑戰性數學問題》(Challenging mathematical problems with elementary solutions)第二版中的問題第171、173跟174。

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.