殆素数

数论中,一个自然数称为殆素数当且仅当存在一个绝对常数K,使这个自然数最多有K素因子[1][2]。自然数n称为k次殆素数当且仅当Ω(n) = k,其中Ω(n)是n整数分解过程中的指数和:

因此,一个自然数是素数,当且仅当它是一次殆素数;一个自然数是半素数,当且仅当它是二次殆素数。k次殆素数的集合通常表示成Pk。开始的几个k次殆素数是:

k k次殆素数 OEIS数列
12, 3, 5, 7, 11, 13, 17, 19, ... OEISA000040
24, 6, 9, 10, 14, 15, 21, 22, ... OEISA001358
38, 12, 18, 20, 27, 28, 30, ... OEISA014612
416, 24, 36, 40, 54, 56, 60, ... OEISA014613
532, 48, 72, 80, 108, 112, ... OEISA014614
664, 96, 144, 160, 216, 224, ... OEISA046306
7128, 192, 288, 320, 432, 448, ... OEISA046308
8256, 384, 576, 640, 864, 896, ... OEISA046310
9512, 768, 1152, 1280, 1728, ... OEISA046312
101024, 1536, 2304, 2560, ... OEISA046314
112048, 3072, 4608, 5120, ... OEISA069272
124096, 6144, 9216, 10240, ... OEISA069273
138192, 12288, 18432, 20480, ... OEISA069274
1416384, 24576, 36864, 40960, ... OEISA069275
1532768, 49152, 73728, 81920, ... OEISA069276
1665536, 98304, 147456, ... OEISA069277
17131072, 196608, 294912, ... OEISA069278
18262144, 393216, 589824, ... OEISA069279
19524288, 786432, 1179648, ... OEISA069280
201048576, 1572864, 2359296, ... OEISA069281

参考资料

  1. Sándor, József; Dragoslav, Mitrinović S.; Crstici, Borislav. . Springer. 2006: 316 [2015-04-14]. ISBN 978-1-4020-4215-7. (原始内容存档于2021-03-08) (英语).
  2. Rényi, Alfréd A. . Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 1948, 12 (1): 57–78 [2015-04-14]. (原始内容存档于2021-04-08) (俄语).

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.