气候临界点

气候临界点英語:)是一个关键阈值,越过该阈值会导致系统状态发生巨大且通常不可逆的变化。气候科学家使用术语“临界点”来表明气候系统的脆弱性。[2][3]系统一旦“倾覆”,很可能对人类社会产生严重影响。[4][5]

气候系统中可能产生颠覆性影响的因素(临界要素)。
气候临界点(底部)与社会经济系统中相关临界点(顶部)在不同时间尺度上的相互作用。[1]

政府間氣候變化專門委員會(IPCC)早在2000年代就开始考虑临界点的可能性。当时IPCC得出结论,只有在全球相对前工业时代变暖大于或等于4 °C时才会触发临界点。但现在认为,在今天的升温水平(略高于1 °C)下,就有显著概率已经达到了临界点,而升温 2°C的情景下大概率越过了临界点。[6]

地球系统中可能触发临界点的大尺度要素称为临界要素(tipping element)。[7]气候系统中至少15个不同要素,例如格陵蘭冰原南極冰蓋,被认为是可能的临界要素。[8][9]一个危险是,如果某个系统的临界点被越过,可能会导致一连串的其他临界点被相继越过。[10]如果发生这种连锁反应,全球平均温度可能将会上升至高于过去120万年任何时期,地球将变成“温室地球”。[11]

临界点未必是突变的。例如,平均温升在1.5-2 °C之间时,格陵蘭冰原将在数千年内不可逆转地融化。[12][13]然而,美國地球物理聯盟2021年的一项研究表明,南极洲思韦茨冰架有可能在2025年之前破碎。[14][15]

参见

参考文献

  1. Otto, I.M. . PNAS. February 4, 2020, 117 (5): 2354–2365. PMC 7007533可免费查阅. PMID 31964839. doi:10.1073/pnas.1900577117.
  2. . The Guardian. 2021-06-23 [2021-07-22]. (原始内容存档于22 July 2021) (英语).
  3. Lenton, TimothyM.; Rockström, Johan; Gaffney, Owen; Rahmstorf, Stefan; Richardson, Katherine; Steffen, Will; Schellnhuber, Hans Joachim. . Nature. 2019-11-27, 575 (7784): 592–595. Bibcode:2019Natur.575..592L. PMID 31776487. doi:10.1038/d41586-019-03595-0 (英语).
  4. Climate tipping points could topple like dominoes, warn scientists 页面存档备份,存于, The Guardian, 3 June 2021
  5. Climate change driving entire planet to dangerous 'tipping point‘ 页面存档备份,存于, National Geographic, 28 November 2019
  6. Lenton, Timothy M. . Weather. 2021, 76 (10): 325–326. ISSN 0043-1656. doi:10.1002/wea.4058 (英语).
  7. Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. . Proceedings of the National Academy of Sciences. 2008, 105 (6): 1786–1793. Bibcode:2008PNAS..105.1786L. PMC 2538841可免费查阅. PMID 18258748. doi:10.1073/pnas.0705414105.
  8. Climate scientists fear tipping points (maybe you should too) 存檔,存档日期14 November 2021., PhysOrg, 25 October 2021.
  9. Explainer: Nine ‘tipping points’ that could be triggered by climate change 存檔,存档日期11 February 2020., Carbon Brief, 10 February 2020
  10. Wunderling, Nico; Donges, Jonathan F.; Kurths, Jürgen; Winkelmann, Ricarda. . Earth System Dynamics. 2021-06-03, 12 (2): 601–619 [4 June 2021]. Bibcode:2021ESD....12..601W. ISSN 2190-4979. doi:10.5194/esd-12-601-2021. (原始内容存档于4 June 2021) (英语).
  11. Sheridan, Kerry. . Phys.org. 2018-08-06 [2018-08-08]. (原始内容存档于3 October 2019). Hothouse Earth is likely to be uncontrollable and dangerous to many ... global average temperatures would exceed those of any interglacial period—meaning warmer eras that come in between Ice Ages—of the past 1.2 million years.
  12. Frank Pattyn; Catherine Ritz; Edward Hanna; Xylar Asay-Davis; Rob DeConto; Gaël Durand; Lionel Favier; Xavier Fettweis; Heiko Goelzer. . Nature Climate Change (Journal Nature). 2018, 8 (12): 1053–1061 [2022-05-09]. Bibcode:2018NatCC...8.1053P. doi:10.1038/s41558-018-0305-8. (原始内容存档于2022-06-15).
  13. . NESSC. 12 November 2018 [2019-02-25]. (原始内容存档于26 February 2019).
  14. Douglas, Benn I.; Luck, Adrian; Åström, Jan A.; Crawford, Anna; Cornford, Stephen L.; Bevan, Suzanne L.; Gladstone, Rupert; Zwinger, Thomas; Alley, Karen. . The Cryosphere Discussions. 20 September 2021: 1–25 [2022-01-25]. doi:10.5194/tc-2021-288. (原始内容存档于2022-02-01) (英国英语).
  15. Pettit, Erin C.; Wild, Christian; Alley, Karen; Muto, Atsuhiro; Truffer, Martin; Bevan, Suzanne Louise; Bassis, Jeremy N.; Crawford, Anna; Scambos, Ted A.; Benn, Doug. . AGU Fall Meeting. New Orleans: American Geophysical Union. 2021-12-15 [2022-05-09]. C34A-07. (原始内容存档于2022-04-20).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.