法图引理
在测度论中,法图引理说明了一个函数列的下极限的积分(在勒贝格意义上)和其积分的下极限的不等关系。法图引理的名称来源于法国数学家皮埃尔·法图(Pierre Fatou),被用来证明测度论中的法图-勒贝格定理和勒贝格控制收敛定理。
证明
定理的证明基于单调收敛定理(非常容易证明)。设为函数列 的下极限。对每个正整数,逐点定义下极限函数:
于是函数列单调递增并趋于 。
任意,我们有,因此
于是
据此,由单调收敛定理以及下极限的定义,就有:
推广
外部链接
- . PlanetMath.
参考来源
- H.L. Royden, "Real Analysis", Prentice Hall, 1988.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.