Floyd判圈算法
Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm),是一个可以在有限状态机、迭代函数或者链表上判断是否存在环,求出该环的起点与长度的算法。该算法据高德纳称由美国科学家罗伯特·弗洛伊德发明,但这一算法并没有出现在罗伯特·弗洛伊德公开发表的著作中(页面存档备份,存于)。
如果有限状态机、迭代函数或者链表上存在环,那么在某个环上以不同速度前进的2个指针必定会在某个时刻相遇。同时显然地,如果从同一个起点(即使这个起点不在某个环上)同时开始以不同速度前进的2个指针最终相遇,那么可以判定存在一个环,且可以求出2者相遇处所在的环的起点与长度。
算法
算法描述
如果有限状态机、迭代函数或者链表存在环,那么一定存在一个起点可以到达某个环的某处(这个起点也可以在某个环上)。
初始状态下,假设已知某个起点节点为节点S。现设两个指针t和h,将它们均指向S。
接着,同时让t和h往前推进,但是二者的速度不同:t每前进1步,h前进2步。只要二者都可以前进而且没有相遇,就如此保持二者的推进。当h无法前进,即到达某个没有后继的节点时,就可以确定从S出发不会遇到环。反之当t与h再次相遇时,就可以确定从S出发一定会进入某个环,设其为环C。
如果确定了存在某个环,就可以求此环的起点与长度。
上述算法刚判断出存在环C时,显然t和h位于同一节点,设其为节点M。显然,仅需令h不动,而t不断推进,最终又会返回节点M,统计这一次t推进的步数,显然这就是环C的长度。
为了求出环C的起点,只要令h仍均位于节点M,而令t返回起点节点S,此时h与t之间距为环C长度的整数倍。随后,同时让t和h往前推进,且保持二者的速度相同:t每前进1步,h前进1步。持续该过程直至t与h再一次相遇,设此次相遇时位于同一节点P,则节点P即为从节点S出发所到达的环C的第一个节点,即环C的一个起点。
伪代码
1 t := &S 2 h := &S //令指針t和h均指向起點節點S。 3 repeat 4 t := t->next 5 h := h->next 6 if h is not NULL //要注意這一判斷一般不能省略 7 h := h->next 8 until t = h or h = NULL 9 if h != NULL //如果存在環的話 10 n := 0 11 repeat //求環的度 12 t := t->next 13 n := n+1 14 until t = h 15 t := &S //求環的一個起點 16 while t != h 17 t := t->next 18 h := h->next 19 P := *t
空间复杂度
仅需要创立指针t、指针h,保存环长n、环的一个起点P。空间复杂度为,是常数空间的算法。