磁光陷阱

原子、分子和光學物理學中,磁光陷阱(英文: Magneto-optical trap, MOT)是一種利用雷射冷卻和空間變化磁場來創建陷阱,用以捕捉中性原子的裝置。 磁光陷阱能達到的的溫度取決於原子種類,最低可以低至幾微克耳文。然而,某些原子(例如鋰-7)的超精細結構無法被解析,所以磁光陷阱無法將其溫度降低至都卜勒冷卻極限。

磁光陷阱的實驗架設

磁光陷阱由四極子式分佈的弱磁場,以及六束圓偏振紅失諧、且相互交叉的光學糖蜜光束所構成。當原子遠離陷阱中心的磁場零點(兩線圈之間)時,其能階之間的躍遷頻率會因塞曼位移隨空間的改變,從而逐漸與六道光束的頻率達到共振,並產生散射力,將原子推回到陷阱的中心。這就是磁光陷阱捕獲原子的原理。另外,此一散射力來自於原子移動時,接收了迎面而來的光子所攜帶的反向動量。因此在經過吸收光子、再藉自發輻射釋放出光子的多次循環後,平均而言,原子會逐漸被減速(或者說被「冷卻」)。如此一來,磁光陷阱就能將秒速數百公尺的原子,冷卻至僅剩秒速數十公分 (同樣地,實際速度取決於原子種類)。

順帶一提,儘管彭寧離子阱保羅離子阱可以藉由電場和磁場來捕獲帶電粒子,但這些陷阱對中性原子無效。

應用

由於磁光阱中的原子團密度低,且移動速度緩慢,因此這些原子的平均自由徑相當長。這代表原子之間的碰撞次數較少,讓原子能夠維持在特定的量子態中更久,達到更長的「相干時間」,有助於進行量子資訊實驗。

磁光阱通常是產生玻色-愛因斯坦凝聚的第一步。原子首先在磁光阱中冷卻至反衝極限,再藉由蒸發冷卻降到更低溫,並凝聚而達到更高的相空間密度。

磁光阱可應用在許多量子技術上,例如冷原子重力梯度儀[1],而且可以部署在諸如無人機[2]、地下鑽井[3]...等環境之中。

參見

參考資料

  1. Fixler, J. B.; Foster, G. T.; McGuirk, J. M.; Kasevich, M. A. . Science. 2007-01-05, 315 (5808). ISSN 0036-8075. doi:10.1126/science.1135459 (英语).
  2. Earl, Luuk; Vovrosh, Jamie; Wright, Michael; Roberts, Daniel; Winch, Jonathan; Perea-Ortiz, Marisa; Lamb, Andrew; Hayati, Farzad; Griffin, Paul; Metje, Nicole; Bongs, Kai. . Atoms. 2022-03, 10 (1). ISSN 2218-2004. doi:10.3390/atoms10010032 (英语).
  3. Vovrosh, Jamie; Wilkinson, Katie; Hedges, Sam; McGovern, Kieran; Hayati, Farzad; Carson, Christopher; Selyem, Adam; Winch, Jonathan; Stray, Ben; Earl, Luuk; Hamerow, Maxwell. . PLOS ONE. 2023-07-11, 18 (7). ISSN 1932-6203. PMC 10335664可免费查阅. PMID 37432927. doi:10.1371/journal.pone.0288353 (英语).
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.