膽囊收縮素

膽囊收縮素英語:,簡稱CCKCCK-PZ)是一种脑肠肽,主要功能是促进脂肪蛋白质消化。其名称源自希腊语,包含chole(胆汁)、cysto(囊状)和kinin(移动)三个部分,整体意为“移动胆汁之囊”。它不仅在消化系统中广泛存在,还在中枢及外周神经系统中发挥作用[5]

膽囊收縮素
識別號
别名CCK;, cholecystokinin
外部IDOMIM118440 MGI88297 HomoloGene583 GeneCardsCCK
基因位置(人类
3號染色體
染色体3號染色體[1]
3號染色體
膽囊收縮素的基因位置
膽囊收縮素的基因位置
基因座3p22.1起始42,257,825 bp[1]
终止42,266,185 bp[1]
RNA表达模式
查阅更多表达数据
直系同源
物種人類小鼠
Entrez

885

12424

Ensembl

ENSG00000187094

ENSMUSG00000032532

UniProt

P06307

P09240

mRNA序列

NM_000729
​NM_001174138

NM_031161
​NM_001284508

蛋白序列

NP_000720
​NP_001167609

NP_001271437
​NP_112438

基因位置(UCSC)Chr 3: 42.26 – 42.27 MbChr 9: 121.32 – 121.32 Mb
PubMed查找[3][4]
維基數據
膽囊收縮素(CCK)位於本圖的右下角

膽囊收縮素在此之前名為促胰酶素(pancreozymin),是由小腸黏膜上皮細胞當中的I細胞所合成,並由十二指腸分泌。当胆囊收缩素被分泌出来后,会刺激胰脏胆囊分别释放消化酶胆汁,以帮助消化过程。

除了在消化过程中发挥作用,胆囊收缩素还是一种食欲抑制剂。当胆囊收缩素在体内水平升高时,可以抑制食欲,帮助控制食物的摄入量。最近的證據暗示,膽囊收縮素在促進鴉片類藥物的藥物容許量,如嗎啡海洛因,扮演著重要角色,並且在經歷鴉片類藥物停藥後的疼痛過敏經歷有著部份的關聯性[6][7]

膽囊收縮素基因最早在Canis lupus familiaris)的胃肠道中被发现[8],随后在人类Homo sapiens)、小鼠Mus musculus)、虹鳟Oncorhynchus mykiss)、大西洋鲑Salmo salar)和团头鲂Megalobrama amblycephala)等多个物种中也有发现[5]。研究表明,不同动物中的膽囊收縮素存在两种甚至三种不同的亚型,并且它们的功能存在差异[5]。例如,在虹鳟中存在CCK-L、CCK-N和CCK-T三种膽囊收縮素亚型,其中CCK-L亚型作为饱腹因子调节摄食,而CCK-N亚型则无显著作用[9]。在红鲷Pagrus major)中发现CCK基因存在CCK1和CCK2亚型,其中CCK1亚型在消化过程中发挥重要作用,CCK2亚型则通过向脑发送信号调节食物摄入和控制饱腹感[10]。而在白鲷Diplodus sargus)中,CCK1基因的表达水平不受摄食影响,CCK2基因则参与消化过程的负反馈调节[11]

膽囊收縮素基因通过与胆囊收缩素受体基因(Cholecystokinin receptor,简称CCKR)相结合,调节动物的摄食、消化等生理过程[12]。在多数动物中,CCKR基因存在CCK1R和CCK2R两种亚型[13]。研究显示,CCK与CCK1R基因结合主要影响消化系统,而CCK与CCK2R基因结合则主要影响中枢神经系统,二者共同参与摄食活动的调节过程[14]

參考文獻

  1. GRCh38: Ensembl release 89: ENSG00000187094 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000032532 - Ensembl, May 2017
  3. . National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. . National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. . 水生生物学报. 2023-08-15, 47 (8): 1220–1227. doi:10.7541/2023.2022.0175.
  6. Kissin I, Bright CA, Bradley EL. . Anesth. Analg. 2000, 91 (1): 110–6 [2013-12-02]. PMID 10866896. doi:10.1097/00000539-200007000-00021. (原始内容存档于2007-12-06).
  7. Fukazawa Y, Maeda T, Kiguchi N, Tohya K, Kimura M, Kishioka S. . J. Pharmacol. Sci. 2007, 104 (2): 159–66. PMID 17558184. doi:10.1254/jphs.FP0070475.
  8. Ivy, A. C.; Oldberg, E. . Experimental Biology and Medicine. 1927-11-01, 25 (2): 113–115. doi:10.3181/00379727-25-3724.
  9. Jensen, H; Rourke, IJ; Møller, M; Jønson, L; Johnsen, AH. . Biochimica et biophysica acta. 2001-01-26, 1517 (2): 190–201. PMID 11342099. doi:10.1016/s0167-4781(00)00263-3.
  10. Huong, Tran Thi Mai; Murashita, Koji; Senzui, Ayaka; Matsumoto, Toshiro; Fukada, Haruhisa. . Fisheries Science. 2020-09, 86 (5): 835–849. doi:10.1007/s12562-020-01443-z.
  11. Micale, V; Campo, S; D'Ascola, A; Guerrera, MC; Levanti, MB; Germanà, A; Muglia, U. . PloS one. 2012, 7 (12): e52428. PMID 23285038. doi:10.1371/journal.pone.0052428.
  12. Yu, N; Smagghe, G. . General and comparative endocrinology. 2014-12-01, 209: 74–81. PMID 24842717. doi:10.1016/j.ygcen.2014.05.003.
  13. Dufresne, M; Seva, C; Fourmy, D. . Physiological reviews. 2006-07, 86 (3): 805–47. PMID 16816139. doi:10.1152/physrev.00014.2005.
  14. Balaskó, M.; Rostás, I.; Füredi, N.; Mikó, A.; Tenk, J.; Cséplő, P.; Koncsecskó-Gáspár, M.; Soós, S.; Székely, M.; Pétervári, E. . Experimental Gerontology. 2013-11, 48 (11): 1180–1188. doi:10.1016/j.exger.2013.07.006.

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.