罗斯猜想

罗斯猜想排队理论猜想,若一個排队队伍中,顾客不是随机到达的最简单模型來排队,此猜想提供顾客平均等待时间下界。这是美国南加州大学教授谢尔顿·M·罗斯在1978年提出的猜想,1981年由波兰羅可洛大學的Tomasz Rolski教授证明[1]。用罗斯猜想可得到其下界,而在有限的缓冲队列下,下界不成立。[2]

下界

罗斯猜想是指一個隊伍,其到達機率是依考克斯过程[3],或是非靜態的卜瓦松過程[1][4],其平均等待時間會大於等於

其中

S為服務時間
λ是平均到達率[1]

參考資料

  1. Rolski, Tomasz, , Advances in Applied Probability, 1981, 13 (3): 603–618, JSTOR 1426787, MR 0615953, doi:10.2307/1426787.
  2. Heyman, D. P., , Journal of Applied Probability, 1982, 19 (1): 245–249, JSTOR 3213936, MR 0644439, doi:10.2307/3213936.
  3. Huang, J., , Ph.D Dissertation, 1991, (1), doi:10.13140/RG.2.1.1259.6329.
  4. Ross, Sheldon M., , Journal of Applied Probability, 1978, 15 (3): 602–609, JSTOR 3213122, MR 0483101, doi:10.2307/3213122.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.