贝叶斯信息量准则
在统计学当中,贝叶斯信息量准则(英語:或者:Schwarz information criterion;缩写:BIC、SIC、SBC、SBIC)是在有限集合中进行模型选择的准则:BIC最低的模型是最好的。[1]该准则部分基于似然函数并与赤池信息量准则(AIC)紧密相关。
托马斯·贝叶斯是英国的统计学家。
拟合模型时,增加参数可提高似然,但如此下去可能导致过拟合。BIC与AIC都致力于向模型中引入关于参数数量的惩罚项;其中,BIC中的惩罚项会大于AIC中的惩罚项。
参考文献
- Schwarz, Gideon E., , Annals of Statistics, 1978, 6 (2): 461–464, MR 0468014, doi:10.1214/aos/1176344136.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.