费马多边形数定理
费马多边形数定理说明,每一个正整数最多可以表示为个-边形数的和。也就是说,每一个数最多可以表示为三个三角形数之和、四个平方数之和、五个五边形数之和,依此类推。
一个三角形数的例子,是17 = 10 + 6 + 1。
一个众所周知的特例,是四平方和定理,它说明每一个正整数都可以表示为四个平方数之和,例如7 = 4 + 1 + 1 + 1。
参考文献
- Nathanson, M. B. "A Short Proof of Cauchy's Polygonal Number Theorem." Proc. Amer. Math. Soc. Vol. 99, No. 1, 22-24, (Jan. 1987).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.