超原子

超原子是一个表现出元素的原子性质的原子团簇原子从蒸汽冷却时自然凝结成团簇时优先含有原子个数为(2,8,20,40,58等)的幻數。前两个可以被看作是需要分别填充的第一和第二壳的电子数目。超原子中的自由电子占据整个的原子团外层,而不是分散在单个的原子上。价电子光谱性质及团簇作为整体所具有的化学价态要与相应的原子相似。根据超原子特殊的物理化学特性及潜在的应用价值,有人提出了三维元素周期表的概念[1]。比如TiO、ZrO和WC分别是金属Ni、Pd和Pt的“超级原子”。

铝原子簇

  • Al7 = 性质类似原子
    • Al7 = 性质类似于原子的2价和4价
  • Al13 = 性质类似卤素原子[2]
    • Al13Ix, x = 1–13= 性质类似惰性元素[3]
  • Al14 = 性质类似碱土金属[4][5]
    • Al14Ix, x = 1–14.[3]
  • Al23
  • Al37
  • Al5Bi

磁性超原子

在过渡金属中掺杂的金属超原子中同时存在近自由电子轨道和局域d轨道,d轨道电子贡献了超原子磁矩,而其他近自由电子使超原子具有高稳定性[6]

  • CsNa8 = 性质类似于单个Mn原子
  • TiNan(n=1~13)
  • FeMg8 = 兼具磁性和导电性
  • VCs8 = 兼具磁性和导电性
  • ScCs12
  • MnAuz4(SH)18

超卤素

化合物具有超卤素(superhalogen)特性用MXk+1来表示,M代表一个主族(包含氢原子 )或过渡金属原子,X代表一个卤素原子,k代表M原子的最正价。

  • MX2(M=Li,Na;X=Cl,Br,I)
  • MgX3、CaX3(X=F,Cl,Br).
  • Mg2F5
  • Mg2Cl5、Mg2Cl7
  • BX4、AlX4(X=F,Cl,Br)
  • Al(BH4)n=l~4、Al(BF4)n=l~4
  • MC14(M=Sc,Y,La)

超碱金属

化合物具有超碱金属特性用YMk+1来表示,Y代表一个主族或过渡金属原子,M代表一个碱金属原子,k代表Y原子的最高负价。

  • XLin(n=2,3;X=F,CI,Br,I)
  • OM3(M=Li,Na,K)
  • LinFn+(n=3,4)
  • NLil5
  • BLil5
  • Na2X(X=SH,SCH3,OCH3,CN,N3)
  • Na2XY(X=同上)(Y=MgCl3,Cl,NO2).
  • B2Li11
  • M2Li2k+1+ (k=3,5,7;M=F,O,N,C,respeetively)

超卤素超碱金属化合物

由于超卤素,超碱金属团簇特殊的氧化还原特性 ,因此具有合成超原子间形成的分子(supermolecule)这一类新复合物的可能。

  • (Li3)+(SH)-(SH=LiF2,BeF3, BF,4)
  • LiBeX3(X=F,Cl,Br)
  • BLi6X(X=F,LiF2,BeF3,BF4)

其它超原子

  • Ag9
  • Ag13
  • Ag55
  • C60 = 富勒烯及其衍生物的也具有超原子态[7]
  • 当碳纳米管/氮化硼纳米管轴对称的近自由电子键投影到垂直于轴的平面时,也可以观察到与原子轨道相似的超原子态[8]
  • Li(HF)3Li = (HF)3 就像原子核[9]
  • VSi16F = 具有离子键[10]
  • 13个原子的原子簇[11]
  • 2000个原子的原子簇[12]

配体金属团簇超原子

核心是金属超原子的有机配体金属团簇。

金配体金属团簇超原子

  • RS(AuSR)2 [13]
  • Aun(SR)n−1
  • Aun(SR)n+1
  • Aum(S)n -
  • Aum(SR)n+
  • Au25–nAgn(SH)1818- (n = 1, 2, 4, 6, 8, 10, 12) [14]
  • Au25(SMe)18 [15]
  • Au25(SR)18
  • XAu24(SR)18 (X=Mn,Pd, Ag,Cd)
  • Au24(SR)20
  • Au102(p-MBA)44 [16][17]
  • Au102(SR)44
  • Au144(SR)60 [18]

其它配体金属团簇超原子

  • Ga23(N(Si(CH3)3)2)11[19]
  • Al50(C5(CH3)5)12[20]

参看

参考

  1. Denis E.Berger0n,A.Welford Castleman Jr.,Tsuguo Morisato and Shiv N.Khanna.Formation of Al13I-: Evidence for the Superhalogen Character of Al13,Science. 2004,84:304.
  2. Formation of Al13I: Evidence for the Superhalogen Character of Al13 D. E. Bergeron, A.W. Castleman Jr., T. Morisato, S. N. Khanna Science, Vol 304, Issue 5667, 84–87 , 2 April 2004 Abstract 页面存档备份,存于 MS spectra 页面存档备份,存于
  3. Naiche Owen Jones, 2006.
  4. Philip Ball, "A New Kind of Alchemy", New Scientist Issue dated 2005-04-16.
  5. Al Cluster Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts D. E. Bergeron, P. J. Roach, A.W. Castleman Jr., N.O. Jones, S. N. Khanna Science, Vol 307, Issue 5707, 231–235 , 14 January 2005 Abstract 页面存档备份,存于 MS spectrum 页面存档备份,存于
  6. Reveles J.U,Clayborne P.A,Reber A.C,Khanna S.N, Pradhan K,Sen P and Pederson M.R.Designer magnetic superatoms.Na—ture Chem. 2009,1:310.
  7. Min Feng,Jin Zhao,Hrvoje Petek.Science,2008,320:359.
  8. Pablo D.Jadzinsky,Guillermo Calero,Christopher J.Ackerson,David A.Bushnell and Roger D.Kornberg.Structure of a Thiol Mono-layer-Protected Gold Nanoparticle at 1.1A Resolution.Science. 2007,318:430.
  9. Extraordinary superatom containing double shell nucleus: Li(HF)3Li connected mainly by intermolecular interactions, Sun, Xiao-Ying, Li, Zhi-Ru, Wu, Di, & Sun, Chia-Chung, 2007.
  10. Electronic and geometric stabilities of clusters with transition metal encapsulated by silicon 存檔,存档日期2011-05-22., Kiichirou Koyasu et al.
  11. Platinum nanoclusters go magnetic 页面存档备份,存于, nanotechweb.org, 2007
  12. Ultra Cold Trap Yields Superatom 存檔,存档日期2008-07-06., NIST, 1995
  13. De—anJiang,RobertL.Whetten,WeidongLuoandShengDai.The Smallest Thiolated Gold Superatom Complexes.J.Pbys.Chem.c.2009,l13,l7291.
  14. Emilie B. Guidez, Ville Mäkinen , Hannu Häkkinen, and Christine M. Aikens,Effects of Silver Doping on the Geometric and Electronic Structure and Optical Absorption Spectra of the Au25–nAgn(SH)1818- (n = 1, 2, 4, 6, 8, 10, 12) Bimetallic Nanoclusters,J. Phys. Chem. C, 2012, 116 (38), pp 20617–20624,DOI: 10.1021/jp306885u
  15. J. Akola, M. Walter, R.L. Whetten, H. Häkkinen and H. Grönbeck, "On the structure of thiolate-protected Au25", JACS 页面存档备份,存于 130, 3756–3757 (2008)
  16. M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, H. Häkkinen, Gold Superatom Complexes 页面存档备份,存于"A unified view of ligand-protected gold clusters as superatom complexes ", PNAS 105, 9157 (2008)
  17. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Gold Superatom Complexes 页面存档备份,存于 Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution" Science 318, 430–433 (2007)
  18. O. Lopez-Acevedo, J. Akola, R.L. Whetten, H. Grönbeck, H. Häkkinen, "Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60", JPCC 页面存档备份,存于 130, 3756–3757 (2009)
  19. J. Hartig, A. Stösser, H. Schnöckel, "A metalloid (Ga23{N(SiMe3)2}11) cluster: The jellium model put to test" Angew. Chemie. Int. Ed. 46, 1658–1662 (2007).
  20. P.A. Clayborne, O. Lopez-Acevedo, R.L. Whetten, H. Grönbeck and H. Häkkinen, “Al50Cp*12 Cluster: A 138-electron (L=6) Superatom”, Eur. J. Inorg. Chem. 页面存档备份,存于 2011.

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.