轉移矩陣
在数学中,随机矩阵(stochastic matrix)是用来描述一个马尔可夫链的转变的矩阵,亦称为概率矩阵(probability matrix)、转移矩阵(transition matrix)[1]、替代矩阵(substitution matrix)、马尔可夫矩阵(Markov matrix)或转移概率矩阵(transition probability matrix)。它的每一项都是一个表示概率的非负实数。它适用于概率论、统计学和线性代数,也在计算机科学和群体遗传学中使用。 有几种不同的定义和类型随机矩阵:
- 右随机矩阵(right stochastic matrix)是实方阵,其中每一求和为1。
- 左随机矩阵(left stochastic matrix)是实方阵,其中每一求和为1。
- 双随机矩阵(doubly stochastic matrix)是非负实数方阵,每个行和列求和均为1。
同理,可以定义随机向量(也称为概率向量)为元素为非负实数且和为1的向量。因此,右随机矩阵的每一(或左随机矩阵的每一)都是一个随机向量。
在英语数学文献中的惯例是用概率的和概率的右随机矩阵,而不用和左随机矩阵,本文遵循此惯例。
定义和性质
如果在一个时间步长内从 到移动的概率为 ,随机矩阵 的第 ,第 元素由 给出,例如,
由于从状态 到下一状态的概率总和必须是 1,这个矩阵是一个右随机矩阵,于是
从 到 分两步转变的概率由然后由给定的 的平方矩阵的 号元素给出:
一般地,在由矩阵给出的有限马尔可夫链上从任何状态转移到另一个状态的 k 步转移概率为 。
初始分布为一个。
平稳概率向量 定义为不随转移矩阵的运用而变化的一个向量;也就是说,它定义为概率矩阵的左特征向量,其特征值为1:
佩龙一弗罗宾尼斯定理保证了每个随机矩阵都具有这样的向量,而特征值的最大绝对值始终为1。在一般情况下,可能有多个这样的向量。然而,对于具有严格正项的矩阵,该向量是唯一的,并可以观察到对任意 我们都有以下极限而求出,
- ,
其中 是向量 的第 个元素。在其他方面,这表示处在状态 下的长期概率与初始状态 是独立的。这两种计算得到相同的稳定向量是遍历定理的一种形式,在各种各样的耗散动力系统广泛成立:该系统随着时间演变到定态。
直观地看,随机矩阵表示一个马尔可夫链;对概率分布应用随机矩阵,就是将原始分布的概率质量进行重新分布,同时保持其总质量。如果反复应用此过程,分布就会收敛为马尔可夫链的平稳分布。
性質
設、為二個n×n階轉移矩陣,則以下亦為轉移矩陣:
范例:猫和老鼠
假设你有一个计时器和五个相邻的格子排成一行,零时刻有一只猫在第一个格子中,而一只老鼠在第五个格子中。在计时器增加的时候猫和老鼠都会随机跳到一个相邻的格子中。例如,如果猫在第二个格子,老鼠在第四个,在计时器增加后,猫会出现在第一个格子且老鼠会出现在第五个格子的概率为1/4。如果猫在第一个格子而老鼠在第五个,那么计时器增加后,猫会出现在第二个格子且老鼠会出现在第四个的概率为1。当它们处于同一个格子的时候,猫会吃掉老鼠,游戏结束。随机变量 K 给出了老鼠仍留在游戏中的时间步长。
表示这个包含五种位置组合 (猫,鼠) 的状态的游戏的马尔可夫链为:
- 状态 1:(1,3)
- 状态 2:(1,5)
- 状态 3:(2,4)
- 状态 4:(3,5)
- 状态 5:游戏结束:(2,2), (3,3) & (4,4)
我们使用一个随机矩阵来表示这个系统的转移概率(这个矩阵中的行和列用上面提到的可能状态来索引),
长期平均
无论初始状态是什么,猫最终都会抓到老鼠(概率为1),且极限为稳态 π = (0,0,0,0,1)。要计算随机变量 Y 的长期平均或期望值。对每种状态 Sj 和时间 tk,都有 Yj,k·P(S=Sj,t=tk) 的贡献。生存与否可以视作一个二值变量,Y=1 代表生存状态而 Y=0 代表终止状态。Y=0 的状态不对长期平均有贡献。
参见
- Muirhead's inequality
- 佩龙一弗罗宾尼斯定理
- 密度矩陣
- 双随机矩阵
- Discrete phase-type distribution
- 概率自动机
- Models of DNA evolution
- 马尔可夫核,随机矩阵在连续状态空间的等价形式
参考文献
- . . Stochastic Modelling and Applied Probability. Springer, New York, NY. 2003: 3–38 [2018-03-03]. ISBN 9780387002118. doi:10.1007/0-387-21525-5_1. (原始内容存档于2019-06-29) (英语).
- G. Latouche, V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling, 1st edition. Chapter 2: PH Distributions; ASA SIAM, 1999.