过截角正二十四胞体
过截角正二十四胞体(又叫正四十八胞体)是一个四维多胞体, 由48个相同的三维胞截角立方体组成。每条边连接到两个八边形和一个三角形。
过截角正二十四胞体 | |
---|---|
施莱格尔投影 | |
類型 | 均匀多胞体 |
識別 | |
名稱 | 过截角正二十四胞体 |
參考索引 | 5 6 7 |
數學表示法 | |
考克斯特符號 | or |
施萊夫利符號 | t1,2{3,4,3} |
性質 | |
胞 | 48 (3.8.8) |
面 | 336 192 {3} 144 {8} |
邊 | 576 |
頂點 | 288 |
組成與佈局 | |
顶点图 | (锲形体) |
對稱性 | |
考克斯特群 | F4, [[3,4,3]], order 2304 |
特性 | |
convex, isogonal isotoxal, isochoric | |
过截角正二十四胞体是两个由一种三维胞所组成的半正多胞体之一。另一个是过截角正五胞体,它由10个截角四面体组成。
参考文献
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 (页面存档备份,存于)
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 p.88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
- Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- Olshevsky, George, Pentachoron at Glossary for Hyperspace.
- 1. Convex uniform polychora based on the icosittrachoron - Model 3, George Olshevsky.
- Klitzing, Richard. . bendwavy.org. x3x3o3o - tip, o3x3x3o - deca
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.