集中趋势

在統計學中,集中趨勢(central tendency)或中央趨勢,在口語上也經常被稱為平均,表示一個機率分佈的中間值[1]。最常見的幾種集中趨勢包括算數平均數中位數眾數。集中趨勢可以由有限的數組(如一群樣本)中或理論上的機率分配(如常態分佈)中求得。有些人使用集中趨勢(或集中性)這個詞以表示「數量化的資料之中央值的趨勢」[2][3]。在這種意義下,我們可以利用資数据離散程度(例如標準偏差四分差等相似的統計量)判別其集中趨勢的程度。

集中趨勢()一詞於1920年代後期出現[3]

集中趨勢的統計量

一維資料的集中趨勢可能有以下數種統計方法。在某些情況下,經轉型()後的資料才採用以下的方法。

算术平均数
觀測值的總和除以觀測值的個數,即。常簡稱為平均數,也往往是背後機率分佈的期望值之不偏估計。
中位數
將所有觀測值按大小排序後在順序上居中的數值。
眾數
出現最多次的觀測值。
幾何平均數
觀測值的乘積之觀測值個數方根,即
調和平均數
觀測值個數除以觀測值倒數的總和,即
加權平均數
考慮不同群資料貢獻程度不同時的算數平均數
截尾平均數()
忽略特定比例或特定數值之外的極端值後所得的平均數。例如,四分平均數()正是忽略25%前及75%後的資料後所得的算數平均數。
中程數()又稱全距中值[4]
最大值與最小值的算數平均數,即
中樞紐()
第一四分位數與第三四分位數的算數平均數,即
三均值()
考慮三個四分位數的加權平均數,即
極端值調整平均數()
以最接近的觀測值取代特定比例的極端值後取得的算數平均數。舉例來說,考慮10個觀測值(由小到大排列為)的情況下,10%的極端值調整平均數為
其中分別以取代了

以上的統計量在多維變數中仍可單獨地被套用在各個維度上進行,但並不能保證在轉軸後仍維持一致的結果。

平均數、中位數與眾數的關係

在指數分配exp(λ)中,期望值為1/λ而中位數為(ln 2)/λ,二者並不一致。

在左右對稱的機率分佈中,不同的集中趨勢統計量有相同結果,但在偏度遠離0時則可能不一致。在單峰型的機率分佈()中,平均數(μ)、中位數(ν)與眾數(θ)的關係如下:[5]

其中σ標準偏差。至於任一機率分佈,[6][7]

參考文獻

  1. Weisberg, H. F. (1992) Central Tendency and Variability, Sage University Paper Series on Quantitative Applications in the Social Sciences, ISBN 0-8039-4007-6 p. 2.
  2. Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP for International Statistical Institute. ISBN 0-19-920613-9 (entry for "central tendency")
  3. Upton, G.; Cook, I. (2008) Oxford Dictionary of Statistics, OUP ISBN 978-0-19-954145-4 (entry for "central tendency")
  4. . [2019-12-03]. (原始内容存档于2019-12-03).
  5. Johnson NL, Rogers CA (1951) "The moment problem for unimodal distributions". Annals of Mathematical Statistics, 22 (3) 433–439
  6. Hotelling H, Solomons LM (1932) The limits of a measure of skewness. Annals Math Stat 3, 141–114
  7. Garver (1932) Concerning the limits of a mesuare of skewness. Ann Math Stats 3(4) 141–142
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.