静力学
靜力學是经典力学的分支,专门解析物体在靜力平衡狀态下的负载(力量,力矩)。在这狀态下,或许有外力作用于此物体;但是,各個分系統的相对位置、成分、结构仍旧保持不变。当呈靜力平衡狀态时,系統或者是静止的,或者其質心维持常速运动,处于力学平衡状态。
在静力学上,靜力解析的焦点是放在比较靜力學,就是比较各种不同的靜力平衡狀态。它除了稍微提到外生变数造成的变动外,并不注重狀态间的過程。
设为施于系统上的合力,为系统总质量,为系统加速度,则依照牛顿运动第二定律有(粗体表示向量,即有方向的量)。
将加速度为零的假设应用于外力力矩求和,可得,其中是外力力矩之和,是质量惯性矩,是系统的角加速度。对于的系统,也有
外净力又称为靜力平衡第一条件,外净力矩又称为靜力平衡第二条件,可以用来求解作用于系统的未知量。
背景
力
力是物体对另一个物体的作用,可以是推力,也可以是拉力,趋向于使物体沿其作用方向移动。力的作用由其大小、作用方向和作用点决定。因此,力是一个矢量,因为其效果既取决于作用方向,也取决于作用大小。[4]
力分为接触力和体积力。接触力由直接物理接触产生,例如支撑表面对人体施加的力;体积力由体在 力场(如引力场、电场或磁场)中的位置产生,与任何其他接触无关。地球引力场中的物体重量是体积力的一个例子。[5]
力矩
除了使物体沿作用方向移动的趋势外,力还能使物体绕轴旋转,轴线和力的方向之间是任意的。这种旋转趋势称作力矩(M),也称为扭矩。
关于点的力矩
力在O点的力矩大小等于O到F作用线的距离乘以力的大小:M = F · d,其中
- F = 施加的力
- d = 从轴线到力的作用线的距离,称作力臂。
力矩的方向由右手定则给出,逆时针代表指出纸面,顺时针表示进入纸面。力矩方向可用符号约定表示,例如逆时针用正号(+)表示,顺时针用负号(−)表示,反之亦然。力矩可以矢量形式相加。
用向量形式来写,力矩可以定义为径向量r与力向量F的叉乘:[6]
伐里农定理
伐里农定理指出,力对任意点的力矩等于力对同一点各分力的力矩之和。
应用
注释
- Lindberg, David C. . Chicago: The University of Chicago Press. 1992: 108-110. ISBN 9780226482316.
- Grant, Edward. . New York: Cambridge University Press. 2007: 309-10.
- Holme, Audun. 2nd. Heidelberg: Springer. 2010: 188. ISBN 978-3-642-14440-0.
- Meriam, James L., and L. Glenn Kraige. Engineering Mechanics (6th ed.) Hoboken, N.J.: John Wiley & Sons, 2007; p. 23.
- Engineering Mechanics, p. 24
- Hibbeler, R. C. . New Jersey: Pearson Prentice Hall. 2010. ISBN 978-0-13-607790-9.
- Beer, Ferdinand. . McGraw Hill. 2004. ISBN 0-07-121830-0.
- Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in (Morelon & Rashed 1996,pp.614–642):
“阿拉伯科学家利用一整套数学方法(不仅包括从古代比率论和小量技术中继承下来的方法,还包括当代代数方法和精细计算技术)将静力学提高到了更高水平。阿基米德重心理论的古典成果得到了推广,应用于三维物体,建立了可量杠杆理论,创立了‘重力科学’,后来在中世纪欧洲得到进一步发展。用动力学方法研究静力学现象的过程中,静力学和动力学这两种趋势逐渐形成了力学这门单一科学。动力学方法与阿基米德流体力学的结合产生了所谓‘中世纪流体力学’。[...]为称量特定的重量,人们发明了许多试验方法,尤以天平和称量理论为基础。al-Biruni和al-Khazini的经典著作可被视为实验方法在中世纪科学中应用的开端。”