高斯二项式系数
定义
高斯二项式系数被定义为:
其中, m 和 r 是非负整数。 当 r = 0时值为1。
高斯二项式系数计算一个有限维向量空间的子空间数。令q表示一个有限域里的元素数目,则在q元有限域上n维向量空间的k维子空间数等于
示例
性质
和普通二项式系数一样, 高斯二项式系数是中心对称的:
特别地,
当 q = 1 时,有
参考文献
- Exton, H. (1983), q-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538
- Mukhin, Eugene. (PDF). (原始内容 (PDF)存档于2004-12-10). (undated, 2004 or earlier).
- Ratnadha Kolhatkar, Zeta function of Grassmann Varieties (页面存档备份,存于) (dated January 26, 2004)
- 埃里克·韦斯坦因. . MathWorld.
- Gould, Henry. . Fibonacci Quarterly. 1969, 7: 23–40. MR 0242691.
- Alexanderson, G. L. . Fibonacci Quarterly. 1974, 12: 129–132. MR 0354537.
- Andrews, George E. . SIAM Rev. 1974, 16 (4). JSTOR 2028690. MR 0352557. doi:10.1137/1016081.
- Borwein, Peter B. . Construct. Approx. 1988, 4 (1): 391–402. MR 0956175. doi:10.1007/BF02075469.
- Konvalina, John. . Adv. Appl. Math. 1998, 21: 228–240. MR 1634713. doi:10.1006/aama.1998.0598.
- Di Bucchianico, A. . J. Stat. Plann. Inf. 1999, 79: 349–364. doi:10.1016/S0378-3758(98)00261-4.
- Konvalina, John. . Am. Math. Monthly. 2000, 107 (10): 901–910. JSTOR 2695583. MR 1806919.
- Kupershmidt, Boris A. . J. Nonlin. Math. Phys. 2000, 7 (2): 244–262. Bibcode:2000JNMP....7..244K. MR 1763640. arXiv:math/0004187 . doi:10.2991/jnmp.2000.7.2.11.
- Cohn, Henry. . Am. Math. Monthly. 2004, 111 (6): 487–495. JSTOR 4145067. MR 2076581.
- Kim, T. . Russ. J. Math. Phys. 2007, 14 (3): –275–278. Bibcode:2007RJMP...14..275K. MR 2341775. doi:10.1134/S1061920807030041.
- Kim, T. . Russ. J. Math. Phys. 2008, 15 (1): 51–57. MR 2390694. doi:10.1134/S1061920808010068.
- Corcino, Roberto B. . Integers. 2008, 8: #A29. MR 2425627.
- Hmayakyan, Gevorg. (PDF). [2013-10-22]. (原始内容存档 (PDF)于2021-05-06). (2009).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.