抽象殊相
例子
作为个体的数字,它们经常被认为是抽象殊相,因为它们既不是具体客体,又不是共相:也就是说,它们是特殊的(殊相的)事物,作为自身不在时空中出现的东西而存在。转义是另一个这样的例子,这种实体是抽象殊相。
历史
抽象殊相性(英語:,德語:)是格奥尔格·威廉·弗里德里希·黑格尔在《逻辑学》(1816年第2卷)中引入到哲学中的概念。[1]
参考资料
- [[格奥尔格·威廉·弗里德里希·黑格尔|]], [[逻辑学 (黑格尔著作)|]], Cambridge University Press, 2010, p. 609. See also: Richard Dien Winfield, Hegel's Science of Logic: A Critical Rethinking in Thirty Lectures, Rowman & Littlefield Publishers, 2012, p. 265.
推荐阅读
- Campbell, Keith, 1981. “The Metaphysic of Abstract Particulars,” Midwest Studies in Philosophy 6: 477–488.
- Stout, G. F., 1921. “The Nature of Universals and Propositions,” The Problem of Universals, ed. Charles Landesman, New York: Basic Books, 1971: 154–166.
- Stout, G. F., 1923 “Are the Characteristics of Particular Things Universal or Particular?,” The Problem of Universals, ed. Charles Landesman, New York: Basic Books, 1971: 178–183.
- Rosen, Gideon. . 扎尔塔, 爱德华·N (编). . 2001-07-19.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.