最小上界
定义
给定偏序集合(T,≤),对于S⊆T,S的上确界sup(S)定义为S的所有上界组成的集合的最小元(若有)。即sup(S)满足:
- ∀s∈S ⇒ s≤sup(S)
- ∀t∈T,若t满足∀s∈S ⇒ s≤t,则有sup(S)≤t。
- sup(S)∈T。
上确界也被称为最小上界、lub 或 LUB,在格论中也被称为并,在序理论中S的上确界也被记为S。
- 若S包含最大元素,则该元素就是上确界。
- 若S有上确界,则上确界是唯一的。
- 上确界的对偶概念最大下界叫做下确界或交。
- 偏序集合的子集可能没有上确界,即使它有上界。
- 上确界一定不能混淆于极小,上界,极大元或最大元。
数学分析中的上确界
在数学分析中,实数的集合S的上确界或最小上界记为 sup(S),并被定义为大于或等于 S 中所有成员的最小实数。实数的一个重要性质是它的完备性:实数集合的所有非空子集是有上界的就是这个实数集合成员的上确界。
参考文献
- 引用
参见
- 偏序集
- 上界
- 最小元
- 最大下界
- 本性上确界
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.