开集
在數學上,特別是拓樸學中,開集是對實數開區間進行推廣之後得到的抽象集合。
通常微積分的課程中,會借助歐式空間的距離去描述數列極限;直觀上,當 越來越大時數列 跟 要多靠近有多靠近的時候,就說 是數列 的極限,但這需要距離去嚴謹的描述「靠近程度」,開集就是來自於" 點附近"這樣的直觀概念。類似的,函數極限也需要距離的概念去嚴謹定義。
定義
直觀上,於「開集」或說「不含邊界的集合」中任取一點,都可以找到一個以此點為圓心,且半徑足夠小到落在「開集」裡的圓盤(但圓盤的邊界可能不在開集內)。開集的嚴謹定義由此而來。
歐式空間
所謂的維歐式空間,指的是囊括所有实数n-元組的集合(記為)。 為了定義開集,可以推廣勾股定理,將 中任兩點 與 的歐式距離定義為:
然後定義所謂的(維)開球(open ball):
也就是直觀上,一個以為球心,為半徑但不包含表面的球體。
這樣就可以作如下的定義:
定義 —
若 ,且對所有 ,存在一个 ,使,那麼就說子集是 中的一個開集。
也就是直觀上,取開集 的任意點 都有一個以 為球心的開球完全包含於 。
賦距空间
只要把上節的歐式距離改成一般的度量,開集的概念很容易推廣到賦距空间中。
以下把 中的開球(open ball)定義成:
這樣就可以作如下的定義:
定義 —
是 的子集,且對所有 ,存在 使 ,則稱 是 的一個開集。
這的確推廣了歐式空間部分的定義,因為歐式距離 和本身就組成了一個賦距空間。
賦距空間的開集還會有以下的性質:
定理 —
若 為賦距空間,則
(1) 和 也是 的開集。
(2) 若 和 都是 的開集,則 也是 的開集。
(3) ( 是 的一個子集族),若所有 都是 的開集,則 也是 的開集。(也就是直觀上,任意數量開集的聯集也是開集)
證明 |
---|
(1) 對每個都有,所以是自己的一個開集;另外對所有都有(直觀上來說沒有點可以當開球的球心),所以邏輯上不用驗證是否有開球包含於,就可以得到滿足開集的定義 (直觀上來說,前提為假的話,不論結論是否為真,「前提=>結論」都是對的)。
|
事實上這些性質這就是拓扑空间定義的動機。
用处
开集在拓扑学分支中有著基础的重要性。當定义拓扑空间和其他拓扑结构(处理邻近性与收敛此類概念,比如度量空间和一致空间)時,都會用到开集的概念。
拓扑空间X的每個子集A都包含至少一个(可能为空)开集;最大的这种开集被叫做A的内部。它可以通过取包含在A中的所有开集的并集来构造。
给定拓扑空间X和Y,从X到Y的函数f是连续的,如果在Y中的所有开集的前像是在X中的开集。映射f被叫做开映射,如果在X中的所有开集的像是Y中的开集。
实直线上的开集都是可数個不相交开区间的并集。